• 제목/요약/키워드: Freeze/thaw

검색결과 428건 처리시간 0.024초

Mechanism of shear strength deterioration of loess during freeze-thaw cycling

  • Xu, Jian;Wang, Zhangquan;Ren, Jianwei;Yuan, Jun
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.307-314
    • /
    • 2018
  • Strength of loess that experienced cyclic freeze and thaw is of great significance for evaluating stability of slopes and foundations in loess regions. This paper takes the frequently encountered loess in the Northwestern China as the study object and carried out three kinds of laboratory tests including freeze-thaw test, direct shear test and SEM test to investigate the strength behaviors of loess after cyclic freeze and thaw, and the correlation with meso-level changes in soil structure. Results show that for loess specimens at four dry densities, the cohesion decreases with freeze-thaw cycles until a residual value is reached and thus an exponential equation is proposed. Besides, little change in the angle of internal friction was observed as freeze-thaw proceeds. This may depend on the varying of soil structure, based on which a clue can be found from the surface morphology and mesoscopic scanning of loess specimens. Clearly we observed significant changes in surface morphology of loess and it tends to aggravate at higher water contents or more cycles of freeze and thaw. Moreover, freeze-thaw cycling leads to obvious changes in the meso-structure of loess including lowering the particle aggregates and increasing both the proportion of fine particles and porosity area ratio. A damage variable dependent on the ratio of porosity area is introduced based on the continuum damage mechanics and its correlation with cohesion is discussed.

Impact of seawater corrosion and freeze-thaw cycles on the behavior of eccentrically loaded reinforced concrete columns

  • Diao, Bo;Sun, Yang;Ye, Yinghua;Cheng, Shaohong
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.159-171
    • /
    • 2012
  • Reinforced concrete structures in cold coastal regions are subjected to coupled effects of service load, freeze-thaw cycles and seawater corrosion. This would significantly degrade the performance and therefore shorten the service life of these structures. In the current paper, the mechanical properties of concrete material and the structural behaviour of eccentrically loaded reinforced concrete columns under multiple actions of seawater corrosion, freeze-thaw cycles and persistent load have been studied experimentally. Results show that when exposed to alternating actions of seawater corrosion and freeze-thaw cycles, the compressive strength of concrete decreases with the increased number of freeze-thaw cycles. For reinforced concrete column, if it is only subjected to seawater corrosion and freeze-thaw cycles, the load resistance capacity is found to be reduced by 11.5%. If a more practical service condition of reinforced concrete structures in cold coastal regions is simulated, i.e., the environmental factors are coupled with persistent loading, a rapid drop of 15% - 26.9% in the ultimate capacity of the eccentrically loaded reinforced concrete column is identified. Moreover, it is observed that the increase of eccentric load serves to accelerate the deterioration of column structural behavior.

A novel modeling of settlement of foundations in permafrost regions

  • Wang, Songhe;Qi, Jilin;Yu, Fan;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.225-245
    • /
    • 2016
  • Settlement of foundations in permafrost regions primarily results from three physical and mechanical processes such as thaw consolidation of permafrost layer, creep of warm frozen soils and the additional deformation of seasonal active layer induced by freeze-thaw cycling. This paper firstly establishes theoretical models for the three sources of settlement including a statistical damage model for soils which experience cyclic freeze-thaw, a large strain thaw consolidation theory incorporating a modified Richards' equation and a Drucker-Prager yield criterion, as well as a simple rheological element based creep model for frozen soils. A novel numerical method was proposed for live computation of thaw consolidation, creep and freeze-thaw cycling in corresponding domains which vary with heat budget in frozen ground. It was then numerically implemented in the FISH language on the FLAC platform and verified by freeze-thaw tests on sandy clay. Results indicate that the calculated results agree well with the measured data. Finally a model test carried out on a half embankment in laboratory was modeled.

Capillary Water Absorption Properties of Steel Fiber Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles

  • Qiu, Jisheng;Zheng, Juanjuan;Guan, Xiao;Pan, Du;Zhang, Chenghua
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.451-458
    • /
    • 2017
  • The service life of coal gangue concrete(CGC) strongly depends on the capillary water absorption, this water absorption is susceptible to freeze-thaw cycles. In this paper, the cumulative water absorption and sorptivity were obtained to study the effects of 0, 0.5, 1.0, and 1.5 % steel fiber volume fraction added on the water absorption of CGC. Sorptivity and freeze-thaw tests were conducted, and the capillary water absorption was evaluated by the rate of water absorption(sorptivity). Three prediction models for the initial sorptivity of steel fiber reinforced coal gangue concrete(SFRCGC) under freeze-thaw cycles were established to evaluate the capillary water absorption of SFRCGC. Results showed that, without freeze-thaw cycles, the water absorption of CGC decreased when steel fiber at 1.0 % volume fraction was added, however, the water absorption increased with the addition of 0.5 or 1.5 % steel fibers. Once the SFRCGC specimens were exposed to freeze-thaw cycles, the water absorption of SFRCGC significantly increased, and 1.0 % steel fiber in volume fraction added to CGC caused the lowest water absorption, except for the case of the sample without steel fibers added. The CGC with steel fiber at 1.0 % volume fraction performed better. The SFRCGC has a strong response to freeze-thaw cycles. Results also showed that the linear function prediction model is practical in the field of engineering because of its simple form and a relatively high precision. Although the polynomial prediction model presents the highest computation precision among the three models, the complicated form and too many coefficients make it impractical for engineering applications.

Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles

  • Rahman, M. H.;Hossain, M. M.;Rahman, S. M. E.;Amin, M. R.;Oh, Deog-Hwan
    • 한국축산식품학회지
    • /
    • 제35권6호
    • /
    • pp.772-782
    • /
    • 2015
  • This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at −20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 (Freeze-Thaw Resistance of Blended Cement Concrete using Seawater)

  • 문한영;김성수;이승태;김종필;박광필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

폐유리를 혼입한 콘크리트의 동결융해 저항성에 관한 실험적 연구 (An Experimental Study on the Freeze-Thaw Resistance of Concrete Containing Waste Glass)

  • 박승범;정명일;이봉춘;이준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.593-598
    • /
    • 2002
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It causes some problems such as the waste of natural resources and environmental pollution. Therefore, in this study freeze-thaw resistance test was conducted to analyze the properties of concrete containing waste glasses as fine aggregates and containing industrial by-products (fly ashes, silica fumes). As a results, it was found that freeze-thaw resistance decreases as the content of waste glasses increases. Also, the content of fly ash doesn't affect to the freeze-thaw resistance, and freeze-thaw resistance decreases with tile increase of silica fume contents.

  • PDF

포틀랜드 시멘트 모르타르의 미세구조와 동결융해저항성에 대하여 (Microstructure and Freeze-Thaw Resistance of Portland Cement Mortars)

  • 이종호;장복기
    • 한국세라믹학회지
    • /
    • 제28권11호
    • /
    • pp.917-925
    • /
    • 1991
  • For the present experiment five Portland cement mortars are in order: mortars with two different water/ cement ratios (W/C=0.45 and 0.50, each having no chemical additive), and those with an additive such as superplasticizer, air-entraining agent or water-repelling agent. We fix the W/C ratio of mortars having additive so that their pastes can yield the same workability as that of the cement mortar of W/C=0.50 with no additive. It is shown that the freeze-thaw resistivity depends heavily on the characteristic of wide pores. Despite a good deal of wide pores, the air-entrained specimen shows a good freeze-thaw resistivity due to appropriate air-pores. And also the specimen with water-repelling agent, which proves to cause the microstructure to become hydrophobic, make good resistance to freeze-thaw cycles in spite of its high wide-porosity. Our suggestion is that the freeze-thaw durability of Portland cement mortar/concrete can be more effectively enhanced by using air-entraining agent or water-repelling agent, and simutaneously by taking proper measures against foaming and/or the increased tendency of wide-pore building due to additive.

  • PDF

콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델 (Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures)

  • 조태준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF