• Title/Summary/Keyword: Freeze/Thaw

Search Result 428, Processing Time 0.038 seconds

BIO-BARRIER FORMAT10N BY BACTERlUM/FUNGUS INJECTION INTO SOILS

  • Kim, Geonha
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.11-16
    • /
    • 2001
  • If microorganisms are injected into porous medium such as soils along with appropriate substrate and nutrients, soil pore size and shape are changed from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after specific bacterium or fungus was inoculated into soil pore. Hydraulic conductivity was decreased to 10 % ∼ 1 % and maintained constant while substrate was provided. Under the adverse conditions such as no substrate, chemical solution permeation, and freeze-thaw cycles, hydraulic conductivity was increased 30∼50%. Hydraulic conductivity decrease of fungus-soil mixture was faster than that of bacterium-soil mixture. Fungus-soil mixture, however, was more sensitive to the adverse conditions.

  • PDF

Evaluation of Freezing-thawing Resistance by Sea water with Variation of micropores of slag concrete (슬래그 콘크리트의 미세 공극구조 변화에 따른 해수 동결융해 저항성능 평가)

  • Song, Gwon-Yong;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Kim, Hong-Seop;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.129-130
    • /
    • 2014
  • In the case of concrete structures which have been recently exposed to the marine environment, durability is greatly reduced by the freezing-thawing action. When it is used by appropriately replacing the ground granulated blast-furnace slag(GGBS) that is a industrial by-product, the concrete structure of marine environment is known to have a durability to freezing-thawing resistance. In this experiment, micropore in accordance with a replacement ratio of GGBS was confirmed to show different results respectively. The freeze-thaw resistance was showed different aspects respectively because it is different the amount of water in the pore due to the difference of micropore. Therefore, in this study, the freezing-thawing resistance of sea water by variation of micropores of slag concrete had been evaluated.

  • PDF

Proposal of Matrix Spacing Factor for Analyzing Air Void System in Hardened Concrete (콘크리트 내부공극 분석을 위한 행렬간격계수 모델식의 제안)

  • Jeong Won-Kyong;Jun In-Koo;Kim Yong-Kon;Lee Bong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.679-682
    • /
    • 2004
  • Air void systems in hardened concrete has an important influence on concrete durability such as freeze-thaw resistance, water permeability, surface scaling resistance. Linear traverse method and point count method described at ASTM is the routine analysis of the air void system that have been widely used to estimate the spacing factor in hardened concrete. Recently, many concretes often have a spacing factor higher than the generally accepted $200-250{\mu}m$ limit for the usual range of air contents. This study is proposed to estimate the matrix spacing factor by calculation of simplicity. The matrix spacing factor needs two parameters that are air content and numbers of air voids in the hardened concrete. Those are obtained from the standard air-void system analysis of the ASTM C 457. The equation is valid for all values of paste-to-air ratio because the estimation of paste content is unnecessary at the using ASTM C 457. The matrix spacing factor yields a similar estimate of the standard spacing factor.

  • PDF

Freezing and Thawing Resistance of Hardened Cement Paste Containing Blending Materials in the Sea Water (혼합재를 사용한 시멘트경화체의 해수 중에서의 동결융해 저항성)

  • 이양수;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.589-596
    • /
    • 1990
  • In this study, the freezing and thawing resistance in sea-water of hardened cement paste was investigated by adding slag, diatomaceous earth and fly ash as blending materials and air entraining agent and superplasticizer as admixtures to the cement paste. The structure of hardened cement pate was densified by potential hydraulic properties and pozzolan reactivities of materials and the freezing and thawing resistance of the paste was improved with the effect blending materials and admixtures. As the blending materials were added to the paste, the quantity of C3A was relatively reduced and the formation of expansive ettringite was suppressed to decrease the penetration of sea-water or Cl-, SO42-ion, and then freeze-thaw resistance was enhanced. Particulary, when 40% of slag was mixed, the resistance was excellent.

  • PDF

Strengthening Performance and Failure Characteristics of Reinforced Concrete Beams Exposed to Freezing-and-thawing Cycles after Shear Strengthening with CFRP Plate (CFRP 판으로 전단 보강된 이후 동결융해에 노출된 철근콘크리트 보의 보강성능 및 파괴특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Lee, Min-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.457-460
    • /
    • 2008
  • CFRP plates has been established as an effective method for rehabilitation and strengthening of concrete structures. The CFRP reinforcements are bonded to beams and slabs using structural adhesives. Adhesive strength can be affected by environmental exposure. During freezing-and-thawing cycling, temperature-induced stresses in the adhesive layer, due to differential thermal expansion between the CFRP and the substrate concrete, may lead to bond damage and contribute to or cause premature CFRP composite separation. This paper presents the results of experimental program undertaken to investigate the effects of freeze-thaw cycling (from -18 to $4^{\circ}C$) on the behavior and failure characteristics of RC beams strengthened in shear with CFRP plate using acoustic emission (AE) technique.

  • PDF

An Experimental Study on the Effect of Accelerator and Chemical Admixture Type for the Durability of Shotcrete (급결제 및 혼화제 종류가 숏크리트 내구성에 미치는 영향에 관한 연구)

  • 백신원;권소진;이영수;김의성;신용석
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.109-113
    • /
    • 2003
  • Concrete and shotcrete should withstand the conditions for which they have been designed, without deterioration, over a period of years. But connote and shotcrete are being deteriorated according to aging by internal and external causes. Recently, many studies on the durability of concrete have been conducted But the durability of shotcrete is rarely studied. So, in this study, chloride ion penetration test freeze and thaw test neutralization test were conducted to examine the durability characteristics of shotcrete with several accelerator and chemical admixture types. These results indicate that shotcrete with allah free accelerator and with superplasticizer are durable. Therefore, the present study provides a fm base to make high performance shotcrete.

Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture (고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가)

  • Ahn, Sang Hyeok;Jeon, Sung Il;Nam, Jeong-Hee;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

Petroleum sludge treatment and disposal: A review

  • Johnson, Olufemi Adebayo;Affam, Augustine Chioma
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Petroleum industry produces one of the popular hazardous waste known as Petroleum Sludge. The treatment and disposal of petroleum sludge has created a major challenge in recent years. This review provides insights into various approaches involved in the treatment, and disposal of petroleum sludge. Various methods used in the treatment and disposal of petroleum sludge such as incineration, stabilization/solidification, oxidation, and bio-degradation are explained fully and other techniques utilized in oil recovery from petroleum sludge such as solvent extraction, centrifugation, surfactant EOR, freeze/thaw, pyrolysis, microwave irradiation, electro-kinetic method, ultrasonic irradiation and froth flotation were discussed. The pros and cons of these methods were critically considered and a recommendation for economically useful alternatives to disposal of this unfriendly material was presented.

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

The Adequacy Evaluation of Limestone for Exterior Use (외부용 라임스톤의 시공 적정성 평가)

  • Kim, Rae-Hwan;Lee, Tae-Gyu;Song, Yeong-Chan;Kim, Yong-Ro;Bang, Jung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.169-170
    • /
    • 2017
  • In this study, the adequacy evaluation of limestone for exterior use is presented. Major flaws of limestone for exterior use are reviewed. In addition, freezing-thawing test of the limestone specimens were performed. As a result, the limestone specimens was damaged by the freezing and thawing action for 300 cycle.

  • PDF