• Title/Summary/Keyword: Free-field

Search Result 2,290, Processing Time 0.031 seconds

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

Numerical Evaluation of Boundary Effects in the Laminar Shear Box System (층 분할된 연성전단상자의 경계효과에 관한 수치해석적 분석)

  • Kim, Jin-Man;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.35-41
    • /
    • 2008
  • Laminar-shear-boxes are widely used to simulate free-field seismic ground response by using a l-g shaking table or geo centrifuge in geotechnical earthquake engineering. This study numerically modeled and compared the ground responses in the free field, rigid box, and laminar shear box by using a 3-D FEM program. It is found from the numerical simulations that the laminar shear box can simulate the free field ground movement more precisely than the rigid box. However, the laminar shear box underestimated the surface acceleration of the free field ground. It also showed low-frequency characteristics probably because the stiffness and inertia effect of surrounding ground are neglected.

Cable-free Seismic Acquisition System (무선 탄성파 탐사 시스템)

  • Lee, Donghoon;Kim, Byung-Yeop;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2016
  • Cable-free seismic technology is to acquire seismic data with independent receivers which are not connected by cables. This is an effective method for survey designs with less topographical conditions. With technology advancement for cable-free receivers, reliable data quality, easy deployment, and picking up the receivers, the cable-free technology has begun to apply to land seismic acquisition. In this study we introduced a cable-free seismic system and its equipment. We tried to build up the cable-free seismic technology through the field application. In the seismic tomography field applications, the seismic signals of the cable-free receiver and cabled receiver with the same distance from the source show the same phase in early stage. The difference of the first arrival times between two signals is less than 0.4 ms, which could be accepted. In the field application for seismic reflection exploration, we acquired shot gathers with different source depth and dynamite charge. The shot gathers from cable-free and cabled system are similar to each other. With an efficient method for receiver deployment and survey design, the application of the cable-free technology will increase.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

The Insulation Characteristics and The Electric Field Anlaysis by Conducting Particle in $SF_6$ Gas ($SF_6$가스 내 금속이물 존재시 절연특성 및 전계해석)

  • 조국희;이동준;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.14-19
    • /
    • 2001
  • This paper describes the influence of conducting particle in the coaxial cylindrical electrodes under alternating voltage condition investigated using breakdown electric field and electro magnetics simulation method. Simulated particle-location in GIS chamber were the particle on electrode, the particle on enclosure and free moving particle. As results, it was founded that in case of breakdown electric field of the GIS chamber, breakdown electric field of particle on electrode was the lowest, that of free moving particle was middle and that of particle on enclosure was the highest. And in case of the electric field analysis with particle locations, electric field of particle on electrode was the highest, that of lifted particle was middle and that of particle on enclosure was the lowest. This results can offer a practical reference on the insulation design of domestic GIS.

  • PDF

Simultaneous Detection Properties of Organic Vapor, Pressure Difference and Magnetic Field using a Rugate-structured Free-standing Porous Silicon Film (Rugate 구조를 갖는 자립형 다공성 실리콘 박막을 이용한 유기 증기, 압력차, 자기장의 동시 감응 특성)

  • Han, Seong-Beom;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.186-191
    • /
    • 2017
  • In this study, we investigated the simultaneous detection properties of organic vapor, pressure difference, and magnetic field using a single rugate-structured free-standing porous silicon (RFPS) thin film. Both the wavelength and the intensity of the rugate peaks were changed in the reflectivity spectrum measured at the thin film surface while the organic vapor was exposed to the RFPS thin film. However, when the pressure difference and the magnetic field were exposed to the film, only the rugate peak intensity was changed. Therefore, it is possible to distinguish whether or not the organic vapor is detected by simultaneously changing the rugate peak wavelength and intensity. In addition, a method of distinguishing between the pressure difference and the magnetic field detection signal has been derived by rapidly modulating the direction of the magnetic field. This study shows that it is possible to simultaneously detect and distinguish various objects using a single RFPS thin film, and it is found that porous silicon can be utilized as a sensor sufficiently.

Analysis of Wake and Noise of a Fan in Finite Duct (유한관내에서 축류팬 후류 및 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.100-105
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy. and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lawson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

An Experimental Study on Slamming Impact Pressure and Flow Characteristics by Free Fall of Rectangular Marine Structure (직사각형 해양구조물의 자유낙하 슬래밍 충격압력 및 유동특성에 관한 실험적 연구)

  • Oh, Seung-Jin;Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Wan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.371-377
    • /
    • 2012
  • This paper presents an experimental investigation to figure out slamming impact pressure and flow characteristics of a rectangular Marine structure($800{\times}250{\times}50mm^3$) in free fall. The flow field has been obtained by 2-frame grey level cross correlation PIV(Particle Image Velocimetry) method, the impact pressure of the free fall model by a pressure acquisition system(Dewatron). The angles between a model and the free surface are adapted $10^{\circ}$ and $20^{\circ}$ respectively. Velocity field of water exit has higher better than water entry. The highest point, P2 of impact pressure under the bottom of the model has been appeared about 6 % higher values at 20 degrees than 10 degrees.

An experimental study on the flow characteristics around to changes in the angle of the wedge type structure by free fall (자유낙하에 의한 각도 변화에 따른 쐐기형 구조물 주위의 유동특성에 관한 실험적 연구)

  • Oh, Seung-Jin;Cho, Dae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.493-499
    • /
    • 2013
  • This paper presents are experimental investigation to figure out impact pressure and flow characteristics of a wedge type structure in free fall. The flow field has been obtained by 2-frame grey level cross correlation PIV(Particle Image Velocimetry) method, the impact pressure of free fall structure by a pressure acquisition system apply to Dewetron system. The angles between a model and the free surface are adapted $15^{\circ}$, $25^{\circ}$, $35^{\circ}$ and $45^{\circ}$ respectively. Velocity field of water exit has higher better than water entry. The impact pressure under the bottom of the model has been appeared higher values at $15^{\circ}$ than $45^{\circ}$, and also at P1.

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.