• Title/Summary/Keyword: Free-field

Search Result 2,294, Processing Time 0.026 seconds

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung;Seok, Woochan;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2021
  • This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha;Jinhee Lee;Yong-Tae Kim;Jinsub Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.365-382
    • /
    • 2023
  • A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.

External Gravity Field in the Korean Peninsula Area (한반도 지역에서의 상층중력장)

  • Jung, Ae Young;Choi, Kwang-Sun;Lee, Young-Cheol;Lee, Jung Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.451-465
    • /
    • 2015
  • The free-air anomalies are computed using a data set from various types of gravity measurements in the Korean Peninsula area. The gravity values extracted from the Earth Gravitational Model 2008 are used in the surrounding region. The upward continuation technique suggested by Dragomir is used in the computation of the external free-air anomalies at various altitudes. The integration radius 10 times the altitude is used in order to keep the accuracy of results and computational resources. The direct geodesic formula developed by Bowring is employed in integration. At the 1-km altitude, the free-air anomalies vary from -41.315 to 189.327 mgal with the standard deviation of 22.612 mgal. At the 3-km altitude, they vary from -36.478 to 156.209 mgal with the standard deviation of 20.641 mgal. At the 1,000-km altitude, they vary from 3.170 to 5.864 mgal with the standard deviation of 0.670 mgal. The predicted free-air anomalies at 3-km altitude are compared to the published free-air anomalies reduced from the airborne gravity measurements at the same altitude. The rms difference is 3.88 mgal. Considering the reported 2.21-mgal airborne gravity cross-over accuracy, this rms difference is not serious. Possible causes in the difference appear to be external free-air anomaly simulation errors in this work and/or the gravity reduction errors of the other. The external gravity field is predicted by adding the external free-air anomaly to the normal gravity computed using the closed form formula for the gravity above and below the surface of the ellipsoid. The predicted external gravity field in this work is expected to reasonably present the real external gravity field. This work seems to be the first structured research on the external free-air anomaly in the Korean Peninsula area, and the external gravity field can be used to improve the accuracy of the inertial navigation system.

New Free Wake Method Development for Unsteady Aerodynamic Load on HAWT Blade and Experimental Analysis (풍력블레이드 비정상 공력하중 해석을 위한 자유후류기법 개발 및 실험적 연구)

  • Shin Hyungki;Park Jiwoong;Kim Hogeon;Lee Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.33-36
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady air loads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interact ion. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NREL and SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

Development of a new free wake model considering a waketower interaction for a horizontal axis wind turbine (후류와 타워의 영향을 고려한 수평축 풍력발전기 블레이드의 비정상 하중 예측을 위한 새로운 자유후류기법의 연구)

  • Shin Hyungki;Park Jiwoong;Lee Soongab;Kim Jueon
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.54-63
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady airloads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interaction. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NRELand SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

A time-domain analysis for a nonlinear free-surface problem (시간영역에서의 비선형 자유표면파문제에 대한 수치해석)

  • Kyoung Jo Hyun;Bai Kwang June;Chung Sang Kwon;Kim Do Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF

Lift/Drag Prediction of 3-Dimensional WIG Moving Above Free Surface

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.384-391
    • /
    • 2001
  • The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.

  • PDF

Field testing of a seismically isolated concrete bridge

  • Chang, K.C.;Tsai, M.H.;Hwang, J.S.;Wei, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.241-257
    • /
    • 2003
  • The first seismically isolated structure in Taiwan was completed in early 1999. Seven new bridges of the Second National Freeway located at Bai-Ho area, a region which is considered to be of high seismic risk, have been designed and constructed with lead-rubber seismic isolation bearings. Since this is the first application of seismic isolation method to the practical construction in Taiwan, field tests were conducted for one of the seven bridges to evaluate the assumptions and uncertainties in the design and construction. The test program is composed of ambient vibration tests, forced vibration tests, and free vibration tests. For the free vibration tests, a special test setup composed of four 1000 kN hydraulic jacks and a quick-release mechanism was designed to perform the function of push-and-quick release. Valuable results have been obtained based on the correlation between measured and analytical data so that the analytical model can be calibrated. Based on the analytical correlation, it is concluded that the dynamic characteristics and free vibration behavior of the isolated bridge can be well captured when the nonlinear properties of the bearings are properly considered in the modeling.

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

Phase Transition Behaviors of Lead-Free Piezoelectric (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (납이 포함되지 않은 압전 특성의 (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x 상전이 거동 연구)

  • Lee, Byoungwan;Luo, Haosu;Kim, Jung Kyu
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.101-109
    • /
    • 2020
  • In this study, the phase transition behaviors of lead-free (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (NBT-BT) are investigated by using Brillouin spectroscopy. The elastic properties, sound velocity and absorption coefficient of NBT-BT are characterized as a function of temperature along different crystallographic axes. The temperature dependences of the elastic constants of NBT-BT near the morphotropic phase boundary are determined for the first time. The unpoled NBT-BT single crystals exhibits the typical relaxor behaviors, presenting broad acoustic and dielectric anomalies. The application of electric field induced discontinuous changes in the elastic properties at ~110℃, which indicates field-induced phase transition occurred. The electric field also changes the dielectric constant from more relaxor-like to ferroelectric-like dielectric behavior.