• Title/Summary/Keyword: Free-Surface Flow

Search Result 831, Processing Time 0.03 seconds

Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces (가열된 표면에 고착된 액적의 증발 특성에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Yun, Kuk Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

An Experimental Study on the Flow Around a Simplified 2-Dimensional Vehicle-Like body (단순화된 2차원 자동차형 물체주위의 유동에 관한 실험적 연구)

  • 유정열;김사량;강신형;백세진;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.178-189
    • /
    • 1989
  • An experimental study has been performed to study the effect of the base slant angle of a 1/10 scale two-dimensional vehicle-like body on its wake flow including the recirculating region, where the simplified shape of the body has been originated from a profile of a domestic passenger car. In the case of a Reynolds number based on the length of the model R=7.96*10$^{5}$ , the surface pressure coefficient, the mean velocity and the turbulent stresses have been measured, while the flow visualization technique using wool tuft has been adopted as well. When the base slant angle of the model is 15.deg., the free stream flowing parallel to the slant is observed to be separated from the lower edge of the slant, thus forming the smallest recirculating region. When the base slant angles are 30.deg. and 45.deg., the free streams are separated from the upper edge of the slant and the sizes of the recirculating zones are observed to be almost the same as when the base slant angle is 0.deg. From these observations, it is conjectured that between the base slant angles of 15.deg. and 30.deg. there exists a critical angle at which the size of the recirculating region becomes minimum and as the slant angle becomes larger than this critical angle the separation line moves along the slant towards the rear edge of the roof. Through the flow visualization technique, the existence of the two counter-rotating bubbles in the recirculating region has been clearly observed and verified.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

Blob and Wave Formation at the Free Edge of an Initially Stationary fluid Sheet (액체 필름 끝단에서의 유동특성에 관한 수치연구)

  • Song Museok;Ahn Jail
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.307-310
    • /
    • 2002
  • A two-dimensional numerical method for inviscid two-fluid flows with evolution of density interface is developed, and an initially stationary two-dimensional fluid sheet surrounded by another fluid is studied. The Interface between two fluids is modeled as a vertex sheet, and the flow field u÷th the evolution of interface is solved by using vortex-in-cell/front-tracking method. The edge of the sheet Is pulled back into the sheet due to surface tension and a blob is formed at the edge. This blob and fluid sheet are connected by a thin neck. In the inviscid limit, such process of the blob and neck formation is examined in detail and their kinematic characteristics are summarized with dimensionless parameters. The edge recedes at $V=1.06({\sigma}/{\rho}h)^{0.5}$ and the capillary wave Propagating into the fluid sheet must be considered for bettor understanding of the edge receding.

  • PDF

Steady State Analysis of Magnetic Head Slider at Ultra Low Clearance (마그네틱 헤드 슬라이더의 極小 空氣膜에 대한 定常狀態 解析)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.764-770
    • /
    • 1989
  • This paper analyze the steady state performance of a self-acting air lubricated slider bearing in hard disk/head system. Modified Reynolds' equation is derived from the steady state compressible Navier-Stokes equation, under slip-flow conditions. Finite difference technique and numerical procedure are described by using Newton-Raphson iteration method to slove the non-linear equations. These techniques are applied to conventional slider bearings and the effects of molecular mean free path(MMFP) for a recording surface of hard disk are shown. The calculation procedure developed here, wide applicabilities in practical head design procedures, and converges rapidly.

A Study on Seepage line of Dam body by Finite Element method and Experiment. (이론 및 실험에 의한 제체의 침윤선에 관한 연구)

  • 신문섭;안상진
    • Water for future
    • /
    • v.14 no.2
    • /
    • pp.53-62
    • /
    • 1981
  • In the Hydraulic Structure, Such as dam body or levee of river that is constructed with soil, We analyzed a top line of free ground water table. This study is based on the logical reason that the pressure on the free surface is atmospheric and the seepage line is a stream line. In order to research for the unknown seepage line. We analyzed seepage water of steady flow through parous media by Finite Element method based on Galerkin Principle, and compared the comluted value with experimental value. The results show that the computed value was nearly equal to the experimental value. Finally, it noticed that finite Element method was more practical than Experimental Method for Seepage line analysis.

  • PDF

OVERVIEW OF FUSION BLANKET R&D IN THE US OVER THE LAST DECADE

  • ABDOU M. A.;MORLEY N. B.;YING A. Y.;SMOLENTSEV S.;CALDERONI P.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.401-422
    • /
    • 2005
  • We review here research and development progress achieved in US Plasma Chamber technology roughly over the last decade. In particular, we focus on two major programs carried out in the US: the APEX project (1998-2003) and the US ITER TBM activities (2003-present). The APEX project grew out of the US fusion program emphasis in the late 1990s on more fundamental science and innovation. APEX was commissioned to investigate novel technology concepts for achieving high power density and high temperature reactor coolants. In particular, the idea of liquid walls and the related research is described here, with some detailed examples of liquid metal and molten salt magnetohydrodynamic and free surface effects on flow control and heat transfer. The ongoing US ITER Test Blanket Module (TBM) program is also described, where the current first wall/blanket concepts being considered are the dual coolant lead lithium concept and the solid breeder helium cooled concepts, both using ferritic steel structures. The research described for these concepts includes both thermofluid MHD issues for the liquid metal coolant in the DCLL, and thermomechanical issues for ceramic breeder packed pebble beds in the solid breeder concept. Finally, future directions for ongoing research in these areas are described.

Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow (자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발)

  • Nam, Jung-Woo;Park, Jong-Chun;Park, Ji-In;Hwang, Sung-Chul;Heo, Jae-Kyung;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

Characterization of Fiber Connectivity in Fire-resistant High Strength Concrete using Percolation Theory (Percolation 이론을 이용한 내화 고강도 콘크리트의 내부 섬유 연결성 파악)

  • Shin, Young-Sub;Han, Tong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against explosive spalling under elevated temperature, fibers can be mixed with concrete to provide flow paths of evaporated water within concrete to the free surface. The fiber-mix concrete approach is effective against explosive spalling when the flow path generated from melting fibers at the elevated temperature is interconnected to transport high pressurized evaporated water from the inside concrete to the free surface. The percolation theory can identify the connectivity of the fibers and provide an estimate of the fire-resistance of concrete by investigating layout of fibers. In this study, the correlation between percolation theory and explosive spalling of fiber-mixed high strength concrete is analyzed and the connectivity of the fiber in concrete is stereologically investigated by using virtual specimens of fiber-mixed high strength concrete.