• 제목/요약/키워드: Free-Surface Flow

검색결과 830건 처리시간 0.025초

Polymethylmethacrylate (PMMA) 표면개질을 위한 RF 대기압 플라즈마 처리공정의 최적화 (The Optimization of RF Atmospheric Pressure Plasma Treatment Process for Improving the Surface Free Energy of Polymethylmethacrylate (PMMA))

  • 남기천;명성운;최호석
    • 접착 및 계면
    • /
    • 제6권3호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 연구에서는 대기압 플라스마 공정으로 표면 처리 시 PMMA 시편의 표면 자유 에너지에 영향을 주는 인자인 radio frequency (RF) 플라즈마 전압(W), 처리시간(s), 방전 글로우와 시료와의 간격(mm) 그리고 아르곤 가스의 유량(LPM)에 대해 실험 계획법(Design of Experiment, DOE)을 적용한 최적화 실험을 실시하였다. 실험 결과, PMMA의 표면 자유 에너지 증가에 가장 큰 영향을 미치는 인자는 플라즈마 방전 글로우와 시료와의 간격(mm), 처리시간(t), 플라즈마 전압(W) 순으로 확인되었다. 또한 표면에 상호 영향을 미치는 플라즈마 전압과 처리시간에 대한 복합매개변수 형태의 power dose (J)에 따른 의존성을 확인했을 때 1500 J에서 최대의 표면 에너지 증가를 보임을 확인하였다. XPS, AFM 분석을 통해 플라즈마 처리 후 PMMA 표면에 새로운 관능기의 도입과 표면 거칠기 변화를 관찰하였다. 플라즈마 처리에 의한 PMMA plate의 표면 자유 에너지의 변화는 플라즈마 처리에 의한 관능기의 도입과 표면적의 변화에 영향을 받는 것으로 생각된다.

  • PDF

주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1) (Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I))

  • 국건;이준식;고상근
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

난류모형을 이용한 表層密度噴流의 수치해석 (A Numerical Analysis of Buyoyant Surface Jet with Turbulence Models)

  • 최한기;중십계
    • 물과 미래
    • /
    • 제29권2호
    • /
    • pp.221-233
    • /
    • 1996
  • 2차원 표층밀도분류의 특성을 동역학적으로 구명하기 위해 수치해석을 할 경우고려해야 할 가장 중요한 문제는 성층상태에서 난류수송의 평가와 자유수표면의 처리이다. 본 연구에서는 2차원 표층밀도분류에 대한 내부흐름의 연직방향구조를 동역학적으로 구명하기 위해서 비정수압 근사 및 대수응력모형(ASM) 을 사용하여 SIMPLE로 알려진 수치모형을 적용하였다. $\kappa-\varepsilon$모형의 결점인 난류의 이방성을 고려한 대수응력 모형(ASM)을 사용한 2차원 표층밀도분류 수치모형은 밀도계층에 포획감쇠 및 자유수면에서 난류구조를 보다 정확하게 규명할 수 있었다. 대수응력모형(ASM)에 의한 유동장의 계산결과는 $\kappa-\varepsilon$ 모형에 의한 결과와 비교하여 상당히 개선되였으며, 수리실험 결과와 잘 일치하여 모형의 적용성이 검증되었다.

  • PDF

직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석 (Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method)

  • 김민규;권오준
    • 한국항공우주학회지
    • /
    • 제33권3호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 직접모사법을 이용하여 고 고도 희박 영역에서 로켓의 자세 제어에 필수적인 측면 제트 분사와 그에 따른 자유 흐름 유동과 측면 제트의 상호 작용에 대한 연구를 수행하였다. 밀도 차가 큰 자유 흐름 유동과 제트 유동을 동시에 모사하기 위해 입자 가중치 기법을 사용하였다. 두 수직한 평판 사이의 유동 및 측면 제트 분사에 의한 상호 작용 해석을 수행하였고 그 결과를 실험치와 비교하여 프로그램을 검증하였다. 좀 더 실제적인 로켓 모델로 blunted cone cylinder 형상에 대하여 받음각을 변화시켜가며 자유 흐름 유동과 측면 제트의 상호 작용에 대한 연구를 수행하였다. 표면 압력 차이의 분포를 기준으로 람다(lambda) 충격파와 후류의 영향을 토의하였다. 받음각이 있는 유동의 경우 leeward 방향으로는 제트와 자유 흐름 유동의 상호 작용이 약해지며, windward 방향으로는 상호 작용이 매우 강해지는 것을 확인할 수 있었다.

표면장력과 후압을 고려한 고에너지밀도 레이저 용접공정 해석 (A study of high-power density laser welding process considering surface tension and recoil pressure)

  • 하응지;김우승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1190-1195
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of key-hole geometry during high-energy density laser welding process. Unsteady phase-change heat transfer and fluid flow with the surface tension and recoil pressure are simulated. To model the overheated surface temperature and recoil pressure considering subsonic/sonic vapor flow, the one-dimensional vaporization models proposed by Ganesh and Knight are coupled over liquid-vapor interface. It is shown that the present model predicts well both the vaporization physics and the fluid flow in the thin liquid layer over the other model.

  • PDF

Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil

  • Hwang, Joon-Sik;Lee, Jeong-Woo;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.409-417
    • /
    • 2005
  • The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy($\gamma_S$) of the titania particles decreased from 53.12 to 26.94 mJ/$m^2$ as the silane used for surface treatment was increased from 0 to 5.0 wt$\%$. The surface free energy of neat silane was 25.5 mJ/$m^2$, which is quite close to that oftitania particles treated with 5.0 wt$\%$ silane. Due to the hydrophobic nature oftreated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol> formamide>$\alpha$-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.

가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석 (Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface)

  • 유경훈;오명도;명현국
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 - (Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

몰수심도가 작은 고속 수중익 주위의 유동장에 대한 수치계산 (Numerical Study on Flow Field around High Speed Hydrofoil with Shallow Submergence)

  • 이승준;이정무
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.8-13
    • /
    • 2004
  • In order to better understand the characteristics of the flow field around the submerged hydrofoil of finite span with high speed and shallow submergence. a numerical code which can solve the flow around a fast lifting body under the free surface was developed and used to obtain various interesting features of the flow. The code was based on the panel method of Hess( 1972), and the free surface condition was linearized to conform with the assumption of the high Froude number. It is shown that the effect of the change of submerged depth. angle of attack and aspect ratio upon the sectional lift coefficient is rather significant for the case of the chosen example wing, which has the rectangular planform. Since Lee(2002)'s theoretical results were for the wing of elliptical planform, the direct comparison of the two results was not possible. It seems that more computational results are in need to compare the theoretical and the numerical prediction in detail.

접면포착법에 의한 수중익 주위의 이층류 유동계산 (Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method)

  • 곽승현
    • 한국항만학회지
    • /
    • 제13권1호
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF