• Title/Summary/Keyword: Free-Camera Model

Search Result 34, Processing Time 0.025 seconds

The General Analysis of an Active Stereo Vision with Hand-Eye Calibration (핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석)

  • Kim, Jin Dae;Lee, Jae Won;Sin, Chan Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.83-83
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot′s end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

The General Analysis of an Active Stereo Vision with Hand-Eye Calibration (핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석)

  • 김진대;이재원;신찬배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.89-90
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot's end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera (다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Kwon, Soon-Chul;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.439-448
    • /
    • 2020
  • In this paper, we propose a modified optimization algorithm for point cloud matching of multi-view RGB-D cameras. In general, in the computer vision field, it is very important to accurately estimate the position of the camera. The 3D model generation methods proposed in the previous research require a large number of cameras or expensive 3D cameras. Also, the methods of obtaining the external parameters of the camera through the 2D image have a large error. In this paper, we propose a matching technique for generating a 3D point cloud and mesh model that can provide omnidirectional free viewpoint using 8 low-cost RGB-D cameras. We propose a method that uses a depth map-based function optimization method with RGB images and obtains coordinate transformation parameters that can generate a high-quality 3D model without obtaining initial parameters.

Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion (퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Open Standard Based 3D Urban Visualization and Video Fusion

  • Enkhbaatar, Lkhagva;Kim, Seong-Sam;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.403-411
    • /
    • 2010
  • This research demonstrates a 3D virtual visualization of urban environment and video fusion for effective damage prevention and surveillance system using open standard. We present the visualization and interaction simulation method to increase the situational awareness and optimize the realization of environmental monitoring through the CCTV video and 3D virtual environment. New camera prototype was designed based on the camera frustum view model to project recorded video prospectively onto the virtual 3D environment. The demonstration was developed by the X3D, which is royalty-free open standard and run-time architecture, and it offers abilities to represent, control and share 3D spatial information via the internet browsers.

A Measure for Improvement in Accuracy by Performance Evaluation of a DPRMs (말뚝 변위 측정시스템의 진동 평가에 의한 정확도 향상 대책)

  • Choi Youngsam;Chung Jintai;Lee Kyeyoung;Han Changsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1653-1659
    • /
    • 2005
  • In this study, the performance of a DPRMs is evaluated and the measurement precision for the pile driving is presented. The DPRMs is a visual-measurement system for the pile rebound and the penetration movement using a high speed line-scan camera. The DPRMs generates the measurement deviation. It is caused by the strong impact for the pile driving. To reduce it, the vibration signal analysis about the pile driving is performed. As a result, it is confirmed that the tilting frequency of a camera-tripod structure corresponding to excitation frequency range of the ground is under 40Hz. Through the structure modification, the camera-tripod structure is redesigned to the model being free itself from the excitation frequency range of the ground. By the verification testing about the improvement effects, it is inspected that the tilting and measurement deviation of the redesigned DPRMs are reduced.

The Stabilization Loop Design for a Drone-Mounted Camera Gimbal System Using Intelligent-PID Controller (Intelligent-PID 제어기를 사용한 드론용 짐발 시스템의 안정화기 설계)

  • Byun, Gi-sig;Cho, Hyung-rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.102-108
    • /
    • 2016
  • A flying drone generates vibrations in a great variety of frequencies, and it requires a gimbal system stabilization loop design in order to obtain clean and accurate image from the camera attached to the drone under this environment. The gimbal system for drone comprises the structure that supports the camera module and the stabilization loop which follows the precise angle while blocking the vibration from outside. This study developed a dynamic model for one axis for the stabilization loop design of a gimbal system for drones and applied classical PID controller and intelligent PID controller. The Stabilization loop design was developed by using MATLAB/Simulink and compared the performance of each controller through simulation. Especially, the intelligent PID controller can be designed almost without the dynamic model and it demonstrates that the angle can be followed without readjusting the parameters of the controller even when the characteristics of the model changes.

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.

Interactive information process image with minute hand gestures

  • Lim, Chan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.799-802
    • /
    • 2016
  • It is definitely an interesting job to work with V4 to create various contents emphasizing different interfaces like 3D graphics, and multimedia such as video, audio, and camera. Moreover, beyond the other interface, as it could be used in the many aspects of the sensory sign such as visual effects, auditory effects, and touchable effects, it feels free to make a better developed model. We intended the users to feel some kind of pleasure and interactions rather than just using in aspect of Media art.

Surface Treatment Effect on the Toilet by Numerical Modeling and High Speed CCD Camera (수치모델과 고속 CCD 카메라를 이용한 세변기 표면 처리 효과 특성 해석)

  • Roh, Ji-Hyun;Do, Woo-Ri;Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • Numerical analysis is done to investigate the effect of surface treatment of a toilet on the cleanness. The surface treatment using plasma for the super-hydrophobic surface expects the self-cleaning effect of the toilet seat cover for preventing the droplets with a great quantity of bacteria during the toilet flushing after evacuation. In this study, the fluid analysis in the toilet during the flushing was performed by an ultrahigh-speed CCD camera with 1,000 frame/sec and the numerical modeling. And the spattering phenomenon from the toilet surface during urine was analyzed quantitatively by CFD-ACE+ with a free surface model and a mixed model of two fluids. If the surface tension of the toilet surface is weak, many urine droplets after collision bounded in spite of considering the gravity. The turbulence generated by the change of angle and velocity of urine and the variation of the collision phenomenon from toilet surface were modeled numerically.