Abstract
In this study, the performance of a DPRMs is evaluated and the measurement precision for the pile driving is presented. The DPRMs is a visual-measurement system for the pile rebound and the penetration movement using a high speed line-scan camera. The DPRMs generates the measurement deviation. It is caused by the strong impact for the pile driving. To reduce it, the vibration signal analysis about the pile driving is performed. As a result, it is confirmed that the tilting frequency of a camera-tripod structure corresponding to excitation frequency range of the ground is under 40Hz. Through the structure modification, the camera-tripod structure is redesigned to the model being free itself from the excitation frequency range of the ground. By the verification testing about the improvement effects, it is inspected that the tilting and measurement deviation of the redesigned DPRMs are reduced.