• 제목/요약/키워드: Free surface flows

검색결과 198건 처리시간 0.025초

조(粗)·세립상(細粒床)의 연속구조를 갖는 개수로 흐름에서 오염물질 수송에 대한 이차흐름 영향 분석 (Impact of Secondary Currents on Solute Transport in Open-Channel Flows over Smooth-Rough Bed Strips)

  • 강형식;최성욱;김규호
    • 대한토목학회논문집
    • /
    • 제29권1B호
    • /
    • pp.73-81
    • /
    • 2009
  • 본 연구에서는 개수로 흐름에서 오염물질 이동 현상에 대한 이차흐름의 영향을 분석하였다. 운동량 방정식과 스칼라 수송 방정식에서의 난류 폐합을 위해 레이놀즈응력 모형 및 GGDH 모형을 사용하였다. 개발된 모형을 이용하여 조 세립상의 횡방향 연속구조를 갖는 개수로 흐름에서의 오염물질 이동에 대한 이차흐름의 영향을 분석하였다. 그 결과, 이차흐름의 영향으로 인해 최대 농도 값의 발생 위치가 이동하는 것으로 나타났으며, 농도 분포 역시 정규 분포에서 거리에 따라 점차 왜곡 되는 것으로 확인되었다. 또한, 이차흐름의 영향으로 자유수면 근처에서는 매끄러운 하상에 비해 거친 하상에서의 오염물질 농도가 더 크게 발생되었으며, 스칼라-흐름률을 계산한 결과, 오염물질의 수직방향 확산은 매끄러운 하상에 비해 거친 하상에서 더 빨리 진행되는 것으로 확인되었다. 한편, 농도 분포 변화에 대한 이차흐름 및 스칼라-흐름률의 영향을 살펴보기 위하여 스칼라 수송률 분석을 수행하였다.

THINC법을 이용한 비혼합 혼상류의 경계면 추적 (Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method)

  • 이광호;김규한;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제24권4호
    • /
    • pp.277-286
    • /
    • 2012
  • 기체와 액체의 유동 및 고체의 변형을 동시에 고려할 수 있는 혼상류모델을 이용하여 파동장을 해석하는 경우, 서로 다른 비혼합의 유체 경계면의 시간변형을 고정도로 추적하는 것이 대단히 중요하다. 본 연구에서는 경계면의 추적에 있어서 VOF(Volume of Fluid)법으로 대표되는 경계면 형상의 재구축이 필요한 Geometrical-type의 경계추적법의 대신에 Algebraic-type의 경계추적법인 THINC(Tangent of Hyperbola for INterface-Capturing)법을 적용하였다. THINC법은 경계면에 대한 형상의 구축이 필요하지 않으므로 VOF법에 비해 비교적 간단한 알고리즘을 가지며, 기존의 Navier-Stokes solver에로 적용성이 용이한 장점을 갖는다. 본 연구에서는 THINC법의 기본적인 이류특성을 고찰하고, 혼상류수치모델인 TWOPM(one-field Model for immiscible TWO-Phase flows)과 결합한 수치모델을 파동장에 적용하여 비혼합 혼상류에서 경계면의 추적능을 검토하였다. 그 결과, 혼상류의 경계면 추적에 있어서 상대적으로 간단한 알고리즘의 THINC법이 기존의 VOF법과 유사한 정도를 갖는 해석법이라는 것을 확인할 수 있었고, 따라서 향후 기포의 연행을 동반하는 쇄파 및 쇄파력의 해석 등에 그의 적용성이 기대된다.

반구형 접지모의시스템을 이용한 접지전극의 형상에 따른 대지전위상승의 분석 (The Analysis of Ground Potential Rise for Shapes of Grounding Electrode Using Hemispherical Grounding Simulation System)

  • 길형준;최충석;이복희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권7호
    • /
    • pp.319-325
    • /
    • 2005
  • In order to analyze ground potential rise of grounding system installed in buildings, the hemispherical grounding simulation system has been designed and fabricated as substantial and economical measures. Ground potential rise(GPR) has been measured and analyzed for shapes of grounding electrode using the system in real time. The system is apparatus to have a free reduced scale for conductor size and laying depth of a full scale grounding system and is constructed so that a shape of equipotential surface is nearly identified a free reduced scale with a real scale when a current flows through grounding electrode. The system was composed of a hemispherical water tank, AC Power supply, a movable potentiometer, and test grounding electrodes. The test grounding electrodes were fabricated through reducing grounding electrode installed in real buildings such as rod type, mesh grid type. When a mesh grid type was associated with a rod type, GPR was the lowest value. The proposed results would be applicable to evaluate GPR in the grounding systems. and the analytical data can be used 0 stabilize the electrical installations and prevent the electrical disasters.

원형 실린더가 있는 직사각형 욕기내의 스핀-업 유동에 관한 실험 및 수치해석 (The Experimental and Numerical Study on Spin-up Flows in a Rectangular Container with an Internal Cylindrical Obstacle)

  • 박재현;서용권;김성균;손영락
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1765-1770
    • /
    • 2003
  • This paper describes a study of the spin-up of a free-surface fluid in a rectangular container in which an internal cylindrical obstacle is mounted. Experiments and numerical analysis have been carried out for a variety of obstacle position. Increase in the speed of background rotation and near wall position of cylindrical obstacle results in the complex flow structures. Numerical and experimental results agree well with each other and the Ekman-pumping model is also applied to this flow.

  • PDF

CFD Application for Prediction of Ship Added Resistance in Waves

  • Kim, Byung-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.135-145
    • /
    • 2018
  • This paper deals with the added resistance of a ship in waves using computational fluid dynamics (CFD). The ship added resistance is one of the key considerations in the design of energy-efficient ship. In this study, the added resistance of a LNG carrier in head waves is computed using a CFD code to consider the nonlinearity and the viscous effects. The unsteady Reynolds Averaged Navier-Stokes equation (RANS) is numerically solved and the volume of fluid (VOF) approach is used to simulate the free surface flows. The length of incident wave varies from half the ship length to twice the ship length. To investigate the nonlinearity effect, both the linear wave condition and the nonlinear wave condition are considered. The heave and pitch motions are calculated along with the added resistance, and the wave contours are obtained. Grid convergence test is conducted thoroughly to achieve the converged motion and resistance values. The calculated results are compared and validated with experimental data.

Sloshing Flows in Ship Tanks

  • Kim, Yonghwan;Shin, Yung-Sup
    • Journal of Ship and Ocean Technology
    • /
    • 제4권3호
    • /
    • pp.21-32
    • /
    • 2000
  • In the present paper, the sloshing flow in the liquid holds of a large tanker is simulated using a numerical method. In the fluid domain, the three-dimensional Navier-Stokes equation with free surface is solved using a finite difference method, and the realistic shapes of multi holds are modeled including the internal members. The time-history of the tank motion is obtained using a time-domain program for ship motion. In order to computer the impulsive pressures on internal structures, a concept of buffer zone is adopted near the tank ceiling during impact occurrence. This study demonstrates that the global fluid motion in the multi liquid holds of ships and FPSO's can be simulated using the numerical method and the corresponding local pressure can be predicted with reasonable accuracy.

  • PDF

Lagrangian 보오텍스 방법에서의 압력장 계산 (Computation of Pressure Fields in the Lagrangian Vortex Method)

  • 이승재;김광수;서정천
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

Dispersal of Molecular Clouds by UV Radiation Feedback from Massive Stars

  • 김정규;김웅태
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.38.1-38.1
    • /
    • 2017
  • We report the results of three-dimensional radiation hydrodynamic simulations of star cluster formation in turbulent molecular clouds, with primary attention to how stellar radiation feedback controls the lifetime and net star formation efficiency (SFE) of their natal clouds. We examine the combined effects of photoionization and radiation pressure for a wide range of cloud masses (10^4 - 10^6 Msun) and radii (2 - 80 pc). In all simulations, stars form in densest regions of filaments until feedback becomes strong enough to clear the remaining gas out of the system. We find that the SFE is primarily a function of the initial cloud surface density, Sigma, (SFE increasing from ~7% to ~50% as Sigma increases from ~30 Msun/pc^2 to ~10^3 Msun/pc^2), with weak dependence on the initial cloud mass. Control runs with the same initial conditions but without either radiation pressure or photoionization show that photoionization is the dominant feedback mechanism for clouds typical in normal disk galaxies, while they are equally important for more dense, compact clouds. For low-Sigma clouds, more than 80% of the initial cloud mass is lost by photoevaporation flows off the surface of dense clumps. The cloud becomes unbound within ~0.5-2.5 initial free-fall times after the first star-formation event, implying that cloud dispersal is rapid once massive star formation takes place. We briefly discuss implications and limitations of our work in relation to observations.

  • PDF

Planar Flow Casting의 퍼들 형성에 관한 수치해석 (A Numerical Study of the Melt Puddle Formation in the Flow Casting,)

  • 김영민;임익태;김우승
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1365-1372
    • /
    • 2001
  • In the planar flow casting(PFC) process, the conditions of the melt puddle between nozzle and rotating wheel affect significantly the quality and dimensional uniformity of the downstream ribbon. For stable puddle formation, the nozzle is placed very close to the quenching wheel, so the surface-tension and wall-adhesion forces have an important effect upon the fluid flow.\`In this study the planar flow casting process has been mode]ed using the VOF method for free surface tracking. The transient puddle formation from the present analysis shows good agreements with the previous experimental results. Furthermore, the variation of melt temperature and the corresponding cooling rate of the melt have been examined. The present results also show how the melt puddle can be farmed on the rotating substrate, how the melt flows within the puddle, and how the changes of the process variables affect the puddle formation and its corresponding fluid flow and heat transfer behavior.