• Title/Summary/Keyword: Free oscillation

Search Result 152, Processing Time 0.022 seconds

System indentification using multiple decimation method and design of PID-ATC

  • Byun, Hwang-Woo;Moon, Joon-Ho;Lee, In-Hee;Lee, Un-Cheol;Kim, Lark-Kyo;Nam, Moon-Hyon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.682-688
    • /
    • 1994
  • LSM(Least-Squares Method) has inherent limitation that precise system identification over wide frequency band is difficult especially at low frequency hand. In this paper we propose to use decimation, a spectrum analysis method widely used in signal processing. The merits of decimation are the flexibility of selection of the frequency hand concerned and the function of LPF(Low Pass Filter). In this paper, frequency-domain is divided into separate frequency bands which will be combined into full frequency-domain by using MDM(Multiple Decimation Method). In this way, free selection of sampling frequency for each hand is possible and the low frequency oscillation modes of LSM are avoided.

  • PDF

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

The Added Mass by Schwarz-Christoffel Transformation (Schwarz-Christoffel 변환(變換)에 의한 부가질량(附加質量)의 계산(計算))

  • J.H.,Hwang;C.H.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 1981
  • The hydrodynamic added mass of two dimensional cylinders oscillating vertically at high frequencies in the free surface is of interest to ship vibration problems. Conformal transformation is one of the methods commonly in use for computing the inertia coefficient. Especially, Schwarz-Christoffel transformation has been employed to evaluate the inertia coefficient for the cylinders of straight frames and chines. In this paper, the inertia coefficient for the cylinders with round corners in vertical oscillation at high frequencies are evaluated by employing the Schwarz-Christoffel transformation for the concave corner. The results of calculation by employing the Schwarz-Christoffel transformation are found to be well within the expected range of values compared to Lewis form and the results obtained by source distribution method.

  • PDF

A 9-Rule Fuzzy Logic Controller of the Nuclear Steam Generator (핵증기 발생기의 9룰 퍼지논리 제어기)

  • Lee, Jae-Young;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.371-380
    • /
    • 1993
  • A model free controller utilizing a set of linguistic fuzzy logic of the human operator's experience is developed to control the steam generator water level in a pressurized water reactor. Only 9 rules for control action are generated from the inputs of water level error and mass flow error implicitly representing the time variation of the collapsed water level. The bell type membership functions of the premise side and the result side are tuned by the sensitivity study. This compact fuzzy logic controller shows a robust control during transient and no offset error and oscillation during steady state operation. For a multi-ramp power increase from start-up to full power, the proposed controller shows good performance for the entire range.

  • PDF

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

A three-dimensional Numerical Model for the Mixing of Saltwater and Freshwater (염수와 담수의 혼합에 관한 3차원 수치모형)

  • Jang, Won-Jae;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.233-236
    • /
    • 2008
  • To analyze the saline intrusion in the place, such as an estuary, the three-dimensional numerical model is developed. In this study, the advection terms of the governing equations are discretized by upwind scheme. By using an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. The equation of state is used to consider the density, and the scalar transport equation for salinity is employed the third order TVD to scheme to prevent unphysical oscillation near discontinuity. In order to verify saline intrusion, the numerical model is conducted to compare the previous model in the lock exchange. The present model generally show a good agreement with the previous one.

  • PDF

Raman Coherence Beats Induced by Frequency Modulated Raman Field in a Three-level $\Lambda$ System (3 준위 원자계에서 주파수 변조 라만 레이저광에 의해 유도된 라만 결맞음 맥놀이)

  • Park, Sung-Jong;Kwon, Taek-Yong;Lee, Ho-Sung;Park, Jong-Dae;Cho, Hyuk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.48-49
    • /
    • 2003
  • 원자가 전자기파와 상호작용할 때 원자 전이의 결맞음 여기 (coherent excitation of atomic transitions)는 일반적인 현상이다. 이 상호작용은 라비 진동 (Rabi oscillation), 자유 유도 감쇠 (free induction decay), 단열 밀도 이송 (adiabatic population transfer), 결맞음 과도 (coherent transients; CT) 등 다양한 결과를 가져온다. 특히, 전자기파의 주파수가 원자의 공진주파수를 중심으로 스윕될 때 결맞음 과도 현상 (coherent transient phenomenon)은 밀도 반전 (population reversal)을 유도하기도 한다. (중략)

  • PDF

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

Compact Doppler Sensor Using Oscillator Type Active Antenna (능동 발진 안테나를 이용한 소형 도플러 센서)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance or speed of a moving object. The active antenna has been realized by oscillator using radiator, patch antenna, as its resonator. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The oscillator type active antenna has been designed and simulated. The prototype fabricated has a very small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $130^{\circ}$ and oscillation frequency of 2.373GHz has been measured. Test results as a doppler sensor shows that doppler signal voltage of about 190mV has been obtained for conducting plate moving 1 meter away from the sensor. And, doppler signal voltage has been linearly increased to the ground from 4.5m height by free-falling the sensor.