• Title/Summary/Keyword: Free carbon

Search Result 942, Processing Time 0.027 seconds

Fabrication of TiC powder by carburization of TiH2 powder (타이타늄 하이드라이드 분말의 침탄에 의한 타이타늄 카바이드 분말 제조)

  • Lee, Hun-Seok;Seo, Hyang-Im;Lee, Young-Seon;Lee, Dong-Jun;Wang, Jei-Pil;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Titanium carbide (TiC) powders are successfully synthesized by carburization of titanium hydride ($TiH_2$) powders. The $TiH_2$ powders with size lower than $45{\mu}m$ (-325 Mesh) are optimally produced by the hydrogenation process, and are mixed with graphite powder by ball milling. The mixtures are then heat-treated in an Ar atmosphere at $800-1200^{\circ}C$ for carburization to occur. It has been experimentally and thermodynamically determined that the de-hydrogenation, "$TiH_2=Ti+H_2$", and carburization, "Ti + C = TiC", occur simultaneously over the reaction temperature range. The unreacted graphite content (free carbon) in each product is precisely measured by acid dissolution and by the filtering method, and it is possible to conclude that the maximal carbon stoichiometry of $TiC_{0.94}$ is accomplished at $1200^{\circ}C$.

Thermal Decompostion of Methane Using Catalyst in a Fluidized Bed Reactor (유동층반응기에서 촉매를 이용한 메탄 열분해)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.487-492
    • /
    • 2008
  • In this paper, Thermocatalytic decomposition of methane in a fluidized bed reactor (FBR) was studied. The technical approach is based on a single-step decomposition of methane over carbon catalyst in air/water vapor free environment. The factors affecting methane decompostion catalyst activity in methane decomposition reactions were examined. The fluidization phenomena in a gas-fluidized bed of catalyst was determined by the analysis of pressure fluctuation properties, and the results were confirmed with characteristics of methane decomposition. The effect of parameters on the H2 yield was examined for methane decompostion. The decompstion rate was affected by the fluidization quality such as mobility, U-Umf, carbon attrition, elutriation and effectiveness density of fluidization gas.

Taraxacum Mongolicum H. Suppress Hepatoprotective Activity by Increasing Liver Antioxidant Enzyme in Carbon Tetrachloride($CCl_4$)-induced Hepatotoxicity in Rats (흰쥐에서 민들레 추출물이 사염화탄소에 의한 산화적 스트레스의 경감기전)

  • Kim, Sung-Hoon;Choi, Jong-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.439-445
    • /
    • 2010
  • Pretreatment with Taraxacum Mongolicum H(TMH) prior to the administration of on $CCl_4$ significantly prevented the increased serum enzymatic activity of aminotransferase(ALT, AST), gamma-glutamyl transpeptidase(GGT) and bilirubin concentration in dose-dependent manner. In addition, pretreatment with TMH also significantly restored the elevation of hepatic malondialdehyde formation and the depletion of reduced glutathione content in the liver $CCl_4$-intoxicated rats. The restoration of microsomal aniline hydroxylase and aminopyrine N-demethylase activities indicated the improvement in functional status of endoplasmic reticulum. $CCl_4$-induced hepatotoxicity was also essentially prevented, as indicated by a liver histopathologic study. TMH showed antioxidant effects in $FeCl_2$-ascorbate-induced lipid peroxidation in rat liver homogenate and in superoxide radical scavenging activity. Our results suggest that the protective effect of TMH against $CCl_4$-induced hepatotoxicity possibly involve mechanisms related to its ability to block p450-mediated $CCl_4$ bioactivation and free radical scavenging effects.

Mid-term Experience with the Pyrolytic Carbon Bileaflet Mechanical Valves (쌍엽 기계판막에대한 임상연구)

  • 박계현
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.137-148
    • /
    • 1992
  • Until March 1991, 435 St. Jude Medical valves and 330 CarboMedics valves were implanted in 358 and 251 patients, respectively. 300 patients were male and 309 were female with the mean age of 35.6 years[from 2 month to 68 years]. 458 valves were implanted in the mitral, 272 in the aortic, 25 in the tricuspid, and 10 in the pulmonic position. Postoperatively, all patients except for very young patients were given coumadin with or without dipyridamole for anticogulation Operative mortality was 7.3%[45 deaths per 618 operations]. A total follow-up of 1244.8 patient-years was achieved for the operative survivors with a follow-up rate of 96.8%, [mean follow-up period=26.3 months /patient, ranging from 1 to 80 months]. Functional improvement was evident; 66.7% of these patients were in NYHA functional class III or IV preopratively, whereas 98.4% are in class I or II pos-toperatively. There occurred 13 late deaths[7 valve-related] and 55 valve-related complications. Linearized rates of late death and valve-related complications were 1.0%/ patient-year, 4.42%/patient-year, respectively. Rates of thromboembolism, anticoagluation-related hemorrhage were 1.12%/patient-year, 1.69% /patient-year, respectively. Actuarial survival at 5 years is 96.0% and complication-free survival at 5 years is 83.9%. No difference in survival and incidence of complications was found between the St. Jude and CarboMedics valves. On the basis of this experience, we believe that the pyrolytic carbon bileaflet mechanical valves are safe and preferable choice among current valve prostheses.

  • PDF

Immobilization of Glucose Oxidase on Multi-Wall Carbon Nanotubes for Biofuel Cell Applications

  • JUNG SOO KEUN;CHAE YOUNG RAE;YOON JONG MOON;CHO BYUNG WON;RYU KEUN GARP
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.234-238
    • /
    • 2005
  • Glucose oxidase was immobilized on the carboxylated multi-wall carbon nanotubes (MWNT-COOHs) in the presence of a coulping reagent, 1-ethy1-3-(3-dimethylaminopropy1) carbodiimide. Significant amounts of glucose oxidase were also immobilized on MWNT-COOHs without the coupling reagent. Various conditions for the immobilization of glucose oxidase were optimized. Optimal pH for the maximal activity of the immobilized glucose oxidase shifted to 7 from the optimal pH of 6 for the maximal activity of free enzyme due to the carboxy1 groups on the surface of MWNT-COOHs. An electrode of graphite rod with a diameter of 6 mm was fabricated using the immobilized glucose oxidase. The cyclic voltammetry study of the enzyme electrode revealed that the oxidation of glucose and subsequent transfer of electrons from the oxidation of glucose to the electrode were possible by the immobilized glucose oxidase without a mediator, implying that the enzyme electrode can be utilized for the development of biofuel cells.

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.

Influence of Mo and Cr Contents on Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Mo 및 Cr 함량의 영향)

  • Hwang, Byoungchul;Suh, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.5 wt.% chromium did this at cooling rates above $3^{\circ}C/s$. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.

Analysis of the Load Contribution of Wind Power and Photovoltaic Power to Power System in Jeju (제주지역 풍력발전 및 태양광발전의 전력계통 부하기여 분석)

  • Myung, Ho-San;Kim, Hyung-Chyul;Kang, Nam-Ho;Kim, Yeong-Hwan;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • As part of the "Carbon free Island 2030" policy, the local government of Jeju Island is currently working to reduce carbon through renewable energy supply. However, renewable energy is difficult to predict due to intermittent characteristics. If the share of renewable energy increase, it is difficult to plan of supply of electricity to grid due to that characteristic of renewable. In this paper analyze the fluctuation rate and the capacity credit of wind power and PV to find out how much wind power and PV contribute to supply of electricity of power system in Jeju. As a result mean value of variation rate of wind power and PV is about 3%, 5% and capacity credit is about 10% and 2% respectively.

Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers

  • Saud, Prem Singh;Ghouri, Zafar Khan;Pant, Bishweshwar;An, Taehee;Lee, Joong Hee;Park, Mira;Kim, Hak-Yong
    • Carbon letters
    • /
    • v.18
    • /
    • pp.30-36
    • /
    • 2016
  • Well-dispersed Ag3VO4 nanoparticles @polyacrylonitrile (PAN) nanofibers were synthesized by an easily controlled, template-free method as a photo-catalyst for the degradation of methylene blue. Their structural, optical, and photocatalytic properties have been studied by X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy equipped with rapid energy dispersive analysis of X-ray, photoluminescence, and ultraviolet-visible spectroscopy. The characterization procedures revealed that the obtained material is PAN nanofibers decorated by Ag3VO4 nanoparticles. Photocatalytic degradation of methylene blue investigated in an aqueous solution under irradiation showed 99% degradation of the dye within 75 min. Finally, the antibacterial performance of Ag3VO4 nanoparticles @PAN composite nanofibers was experimentally verified by the destruction of Escherichia coli. These results suggest that the developed inexpensive and functional nanomaterials can serve as a non-precious catalyst for environmental applications.

Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production

  • Jung, Jin-Young;Park, Mi-Seon;Kim, Min Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.262-267
    • /
    • 2014
  • Pyrolized fuel oil (PFO) was reformed by novel electron beam (E-beam) radiation, and the elemental composition, chemical bonds, average molecular weight, solubility, softening point, yields, and density of the modified patches were characterized. These properties of modified pitch were dependent on the reforming method (heat or E-beam radiation treatment) and absorbed dose. Aromaticity ($F_a$), average molecular weight, solubility, softening point, and density increased in proportion to the absorbed dose of E-beam radiation, with the exception of the highest absorbed dose, due to modification by free radical polymerization and the powerful energy intensity of E-beam treatment. The H/C ratio and yield exhibited the opposite trend for the same reason. These results indicate that novel E-beam radiation reforming is suitable for the preparation of aromatic pitch with a high ${\beta}$-resin content.