• Title/Summary/Keyword: Free Wake Method

Search Result 96, Processing Time 0.027 seconds

Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Sang-Hun;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • As a first step toward a complete CFD-CSD coupling for helicopter rotor load analysis, the present study attempts to loosely couple a CFD code with a source-double panel method. The far-field wake effects were calculated by a time-marching free vortex wake method and were implemented into the CFD module via field velocity approach. Unlike the lifting line method, the air loads correction process is not trivial for the source-doublet panel method. The air loads correction process between the source-doublet method and CFD is newly suggested in this work and the computation results are validated against available data for well-known hovering flight conditions.

Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence (자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이)

  • Park Tae-Choon;Jeon Woo-Pyung;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

Wind Turbine Performance and Noise Prediction by Using Free Wake Method (자유후류 해석을 통한 수평축 풍력 터빈의 성능 및 소음 예측)

  • 신형기;선효성;이수갑
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.134-141
    • /
    • 2002
  • In this paper, a free wake analysis based on the curved vortex element and CVC wake model is used to predict the aerodynamic performance and noise for HAWT. Also for prediction of RPM, a maximum value through a quadratic regression was suggested. And for a noise prediction, the broadband noise prediction method based on experimental equation was used. The curved vortex element uses a BCVE and an SIVE instead of a straight vertex element. In the CVC wake model, the vortex strengths are assumed to be constant along a span and a vortex filament. The free wake structure made by the curved vortex element and CVC was substituted for a vortex lattice, so it has an advantage for the less calculation time and a depiction of accurate wake structure. For the verification of this program, calculated results are compared with Mr. Kim's experiment model and Zond Z-40FS for performance and with WTS-4 and USWP models for noise. Good agreements are obtained between the predicted and the measured data for the performance and far-field noise spectra.

Study on Wake Roll-Up Behavior Behind Wings In Close Proximity to the Ground

  • Han, Cheol-Heui;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.76-81
    • /
    • 2002
  • A numerical simulation of wake behavior behind three-dimensional wings in ground effect is done using an indirect boundary element method (Panel Method). An integral equation is obtained by applying Green's 2nd Identity on all surfaces of the flow domain. The AIC is constructed by imposing the no penetration condition on solid surfaces, and the Kutta at the wing's trailing edge. The ground effect is included using an image method. At each time step, a row of wake panels from wings' trailing edge are convected downstream following the force-free condition. The roll-up of wake vortices behind wings in close proximity is simulated.

The Detectability of Submarine's Turbulent Wake on the sea surface using Ship-Wake Theory (Ship-Wake 이론을 이용한 잠수함 항적탐색 가능성)

  • Lee, Yong-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.773-779
    • /
    • 2011
  • The width of a submarine's turbulent wake, using Shear-free and Ship wake theory, is proportional to $x^n,\;({\frac{1}{5}}{\leq}n<{\frac{1}{2}})$ If we assume submarine's length, width, velocity are 65m, 6.5m, 6kts respectively, and the minimum diffusion of turbulent wake ; ${\infty}\;x^{1/5}$, the width of wake behind the submarine is about 20m at 1.2km, 30m at 15km when there is no breaking waves on the sea surface. However, in the case of breaking waves, it is very limited to identify submarine's wake on the sea surface because wind generated turbulent wake has higher turbulent kinetic energy than that of submarine's wake. As a result, there is a high possibility to detect submarine's wake on the sea surface in the shallow water such as the Yellow-Sea using a proper detection method such as SAR. This means that in anti-submarine operations, non-acoustic sea surface serveillance applied turbulent wake will be very effective way to detect a submarine in near future. To do this we have to develop exact theory of submarine's turbulent wake above all.

Simulation of Unsteady Rotor-Fuselage Interaction Using an Improved Free-Wake Method (향상된 자유후류 기법을 이용한 비정상 로터-동체 상호작용 시뮬레이션)

  • Lee, Joon-Bae;Seo, Jin-Woo;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.629-636
    • /
    • 2010
  • This study is to investigate the aerodynamic effects of the Rotor-Fuselage Interactions in forward flight, and is conducted by using an improved time-marching free-wake panel method. To resolve the instability caused by the close proximity of the wake to the blade surface, the field velocity approach is added to the prior unsteady panel code. This modified method is applied to the ROBIN(ROtor Body Interaction) problem, which had been conducted experimentally in NASA. The calculated results, pressure distribution on fuselage surface and induced inflow ratio without and with the rotor, are compared with the experimental results. The developed code shows not only very accurate prediction of the aerodynamic characteristics for the rotor-fuselage interaction problem but also the rotor wake development.

Noise Prediction of Hovering Tilt Rotor (정지 비행 시 틸트 로터에서 발생하는 소음 예측)

  • Kim, Kyu-Young;Lee, Seong-kyu;Lee, Duck-Joo;Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

Potential Based Prediction Methods of Aerodynamic and Wake Simulation of Wind Turbine Blade (포텐셜 유동을 기반으로 한 풍력 터빈 블레이드의 공력 해석 및 후류 예측 기법에 관한 연구)

  • Kirn, Ho-Geon;Shin, Hyung-Ki;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.414-419
    • /
    • 2007
  • This paper describes the prediction of aerodynamic performance and wake of HAWT in normal and yawed flow operation using potential based methods. In order to analyze aerodynamic performance of wind turbine WINFAS program is used, which is based on VLM(Vortex Lattice Method) and CVC(Constant vorticity contour) Free wake model. Some problems of CVC vortex filament method are investigated arid to improve these problems vortex ring wake are introduced in behalf of CVC vortex filament. The prediction results using the vortex lattice wake are compared to experimental data.

  • PDF

Analysis of Wake and Noise of a Fan in Finite Duct (유한관내에서 축류팬 후류 및 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.100-105
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy. and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lawson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

Wake-Induced Boundary Layer Transition on an Airfoil at Moderate Free-Stream Turbulence (자유유동 난류강도에 따른 익형 위 후류유도 경계층 천이의 거동)

  • Park, Tae-Choon;Kang, Shin-Hyoung;Jeon, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.921-928
    • /
    • 2006
  • Wake-induced boundary-layer transition on a NACA0012 airfoil with zero angle of attack is experimentally investigated in periodically passing wakes under the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensities $(Tu_{\infty})$ at the leading edge of the airfoil are 0.5 and 3.5%, respectively. The Reynolds number (Rec) based on chord length (C) of the airfoil is $2.0{\times}10^5$, and Strouhal number (Stc) of the passing wake is about 1.4. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The patch under the high free-stream turbulence $(Tu_{\infty}=3.5%)$ grows more greatly in laminar-like regions compared with that under the low turbulence $(Tu_{\infty}=0.5%)$ in laminar regions. The former, however, does not greatly change the turbulence level in very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually loses its identification, whereas the latter keeps growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and with the receding wakes.