• Title/Summary/Keyword: Fredholm equation

Search Result 78, Processing Time 0.028 seconds

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

REGULARIZED SOLUTION TO THE FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND WITH NOISY DATA

  • Wen, Jin;Wei, Ting
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.23-37
    • /
    • 2011
  • In this paper, we use a modified Tikhonov regularization method to solve the Fredholm integral equation of the first kind. Under the assumption that measured data are contaminated with deterministic errors, we give two error estimates. The convergence rates can be obtained under the suitable choices of regularization parameters and the number of measured points. Some numerical experiments show that the proposed method is effective and stable.

A Regularization-direct Method to Numerically Solve First Kind Fredholm Integral Equation

  • Masouri, Zahra;Hatamzadeh, Saeed
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.869-881
    • /
    • 2020
  • Most first kind integral equations are ill-posed, and obtaining their numerical solution often requires solving a linear system of algebraic equations of large condition number, which may be difficult or impossible. This article proposes a regularization-direct method to numerically solve first kind Fredholm integral equations. The vector forms of block-pulse functions and related properties are applied to formulate the direct method and reduce the integral equation to a linear system of algebraic equations. We include a regularization scheme to overcome the ill-posedness of integral equation and obtain a stable numerical solution. Some test problems are solved using the proposed regularization-direct method to illustrate its efficiency for solving first kind Fredholm integral equations.

A MIXED INTEGRAL EQUATION IN THE QUASI-STATIC DISPLACEMENT PROBLEM

  • Badr, Abdallah A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • In this work, we solve the Fredholm-Volterra integral equation(FVIE) when the kernel takes a potential function form under given conditions. we represent this kernel in the Weber-sonin integral form.

FREDHOLM INTEGRAL EQUATION WITH SINGULAR KERNEL

  • M. A. Abdou;S. A. Hassan
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.223-236
    • /
    • 2000
  • In this paper, we solve the Fredholm integral equation of the first and second kind when the kernel takes a singular form. Also, some important relations for Chebyshev polynomial of integration are established.

Numerical Solution For Fredholm Integral Equation With Hilbert Kernel

  • Abdou, Mohamed Abdella Ahmed;Hendi, Fathea Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.111-123
    • /
    • 2005
  • Here, the Fredholm integral equation with Hilbert kernel is solved numerically, using two different methods. Also the error, in each case, is estimated.

  • PDF

EXITSENCE OF MILD SOLUTIONS FOR SEMILINEAR MIXED VOLTERRA-FREDHOLM FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCALS

  • LEE, HYUN MORK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.365-375
    • /
    • 2015
  • Of concern is the existence, uniqueness, and continuous dependence of a mild solution of a nonlocal Cauchy problem for a semilinear mixed Volterra-Fredholm functional integrodifferential equation. Our analysis is based on the theory of a strongly continuous semigroup of operators and the Banach fixed point theorem.

An Analysis on the Impact Characteristics in a Layered Half-Space with a Cathing Region (코팅부 균열의 충격특성 해석)

  • 이강요;권순만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.664-667
    • /
    • 1995
  • The purpose of this paper is to consider the disk failure phenomenon based on the second kind Fredholm integral equation and numerical inversion of Laplace transform when the head hit disk asperities at HDI under antiplane impact loading. The model for analysis is a two layeered half-space with a circumferential surface edge crack. The optimum design parameters to reduce the disk failure due to impact are presented

  • PDF

ON THE NUMERICAL SOLUTIONS OF INTEGRAL EQUATION OF MIXED TYPE

  • Abdou, Mohamed A.;Mohamed, Khamis I.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.165-182
    • /
    • 2003
  • Toeplitz matrix method and the product Nystrom method are described for mixed Fredholm-Volterra singular integral equation of the second kind with Carleman Kernel and logarithmic kernel. The results are compared with the exact solution of the integral equation. The error of each method is calculated.