• Title/Summary/Keyword: Frechet differentiable

Search Result 5, Processing Time 0.021 seconds

A LOCAL APPROXIMATION METHOD FOR THE SOLUTION OF K-POSITIVE DEFINITE OPERATOR EQUATIONS

  • Chidume, C.E.;Aneke, S.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.603-611
    • /
    • 2003
  • In this paper we extend the definition of K-positive definite operators from linear to Frechet differentiable operators. Under this setting, we derive from the inverse function theorem a local existence and approximation results corresponding to those of Theorems land 2 of the authors [8], in an arbitrary real Banach space. Furthermore, an asymptotically K-positive definite operator is introduced and a simplified iteration sequence which converges to the unique solution of an asymptotically K-positive definite operator equation is constructed.

PROJECTIVE LIMIT OF A SEQUENCE OF BANACH FUNCTION ALGEBRAS AS A FRECHET FUNCTION ALGEBRA

  • Sady. F.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.259-267
    • /
    • 2002
  • Let X be a hemicompact space with ($K_{n}$) as an admissible exhaustion, and for each n $\in$ N, $A_{n}$ a Banach function algebra on $K_{n}$ with respect to $\parallel.\parallel_n$ such that $A_{n+1}\midK_{n}$$\subsetA_n$ and${\parallel}f{\mid}K_n{\parallel}_n{\leq}{\parallel}f{\parallel}_{n+1}$ for all f$\in$$A_{n+1}$, We consider the subalgebra A = { f $\in$ C(X) : $\forall_n\;{\epsilon}\;\mathbb{N}$ of C(X) as a frechet function algebra and give a result related to its spectrum when each $A_{n}$ is natural. We also show that if X is moreover noncompact, then any closed subalgebra of A cannot be topologized as a regular Frechet Q-algebra. As an application, the Lipschitzalgebra of infinitely differentiable functions is considered.d.

ON SUPPORT POINTS FOR SOME FAMILIES OF UNIVALENT FUNCTIONS

  • Chung, Gae-Sun
    • Journal of applied mathematics & informatics
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1995
  • Given a closed subset of the family $S^{*}(\alpha)$ of functions starlike of order $\alpha$, a continuous Frechet differentiable functional J, is constructed with this collection as the solution set to the extremal problem ReJ(f) over $S^{*}(\alpha)$. The support points of $S^{*}(\alpha)$ is completely characterized and shown to coincide with the extreme points of its convex hulls. Given any finite collection of support points of $S^{*}(\alpha)$ a continuous linear functional J, is constructed with this collection as the solution set to the extremal problem ReJ(f) over $S^{*}(\alpha)$.

Nonlinear Elliptic Equations under Dirichlet boundary Condition (Dirichlet 경계조건하에서의 비선형 타원형 방정식)

  • Han, Chun-Ho;Kim, Zheng-Guo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.61-67
    • /
    • 1998
  • 이 논문에서는 Diruchlet 경계 조건을 갖는 비선형 타원형 방정식 $-{\Delta}u+g(u)=f(x)$의 해의 존재에 대한 연구를 하였다. 존재하는 해의 다중성을 증명하기 위하여 임계점 이론과 롤의 정리를 사용하였으며, 대응되는 범함수에 따라서 방정식의 해와 임계점이 동시에 나타난다는 정리를 이용하였다. 이 때 $g(u)=bu^+-au^-$으로 나타날 때 외력항 (방정식의 우변)의 상수로 주어지는 경우 적어도 두 개의 해가 존재한다는 것을 증명하였다. 만약 우변(외력항)의 상수가 음수이거나 0인 경우이 방정식의 해가 존재하지 않거나 자명한 해만 존재하기 때문에 상수는 양수인 것으로 가정하였다.

  • PDF

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).