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1. Preliminaries

In applications to differential equations, critical
point corresponds to weak solutionn of the equation.
—Au=f(x); xeQ

u=0;, x€dQ, s (1.1)
where Q denotes a bounded domain in %" and
the boundary of Q is smooth. Suppose J€C(Q),
A function ¥ is a classical solution of (1.1) if
ueCH)NCQ), For such a solution, multiplying

(1.1) by ?€C7(Q) vields
[ Vuvo-tp) ax=0 (1.2

after an integration by parts. Let (%)) denote

the closure of Co (&), and the norm is

+ AAYen AU £y s
v QBT DY S5 vl

[l =C [, 1V’ )"

It €W Q) and satisfies (1.2) for all PECT(@),
then # is said to be a weak solution of (1.1). By
our above remarks, any classical solution of (1.1)
Under slightly

hypotheses on [ (e.g. J is Hélder continuous)

is a weak solution. stronger

the converse is also true. Choosing £=Wo () set

= [ GEd-poa g

It is not difficult to verify that 7/ is Frechet
differentiable on £ and

I't)p= [ (Vu-Vo- foydx.

for #€£. Thus # is a critical point of 7 if and
only if # is a weak solution of (1.1).
Let Q@ be a bounded domain in ®R" with
smooth boundary Q. We consider the equation
Lu=f(x) in Q,
u=0 on 02
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with eigenvalues 4,

Recently, the research of the mulitiplicity of
salutions of several operators in the elliptic partial
differential equations has been done. Many authors
try to find the solutions of several operators.

In [1], the authors investigated the multiplicity
of solutions of the nonlinear suspension bridge
equation

= Kyt + 8y + Kyt o + K™ =1+ kcosx +eh(x,1)

xxit
z z

ux=,=u (t—,1=0

@2 D =ua &N =0,

In (3], the authors investigated the multiplicity
of solutions of the nonlinear wave equation
u,—u, +bu" —au” = f(x,1) in (c,d)xSR1
ule,t)=ud,t) =0,
w(x,t+7T)=u(xt)
In these cases the boundary conditions are given
by the periodic functions. It is natural to ask if
the boundary condition is given by the general
smooth function. In this paper, we investigate the
existence of solutions of a nonlinear elliptic
equation (the Laplace operator) with jumping
nonlinearity when the boundary has smooth curve.
In particular, we investigate the multiplicity of
solutions of a nonlinear elliptic equation with
constant load
~Au+by’ —au”=5,5>0 jn Q,

when a<h <b<d, gnd gw)=bu"—au”
2. Constant Load

Let © be a bounded domain in R with
smooth boundary Q. We consider the problem
with constant load s>0

—~Au=-bu*+au +s, in Q

where we assume a<4 <b<4d, Now we state the
main result in this section.

Theorem 2.1 a<h<b<d, and

5>0, Then the problem (2.1) has at least two
solutions.

Agsume that

One of the solutions of the problem (2.1) is
positive and the other solution will be found by
the critical point theory. To prove this we need
several lemmas and theorems.

Lemma 2.1 Llet a<A<b<l, Then the problem
—Au=-bu"+au” in Q... (2.2)
has only the trivial solution.

Proof Rewrite the equation (2.2) as
(~A+A)u+ (A +bu" +(h—au =0 jn W' (Q)
Multiply to the both sides by # and integrate

over Q. Then since (-A+4).4)=0 we have
[ (A + by + (4 —ayu )4 =0
But for all real valued function # for all x€€,
(A4 +bu* +(A —au =20
Hence the left-hand side of the equation (2.3) is

always less than or equal to 0. So the only
possibility to hold (2.3) is #=0 QE.D.

Lemma 2.2 Let a<A<b<d, and s>0. Then the
unique solution # of the problem

~Au=—bu* +au+s in L(Q) ... (2.4)
is positive. And the boundary value problem (2.1)
has a positive solution #.

Proof Let a<i<b<i, and s>0,
problem

Then the

~Au+bu=Au in LX)

has eigenvalues which are positive. Since the
inverse operator is positive, the solution of (2.4) is
positive. The solution of the linear problem (2.4)
is positive, hence ®* is also a solution of the
boundary value problem (2.1). Q.E.D.

Now we investigate the existence of the other
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solution of the problem (2.1) under the condition
a<h<b<l, and s>0 by critical point theory.
Let us define the functional corresponding to

(2.1) in W (Q)

u+

1 by .2 a2
ﬂ(u,s)zL[ElV”|2‘3 *E‘u‘ “‘m:l dx_ = (25)

When b is fixed, we will write F=F for
simplicity. Then F is well defined. The solutions

of (2.1) coincide with the critical points of F(,s),

Lemma 23 If b is fixed and s€®R. Then
F(u,5)=F,(#.5) is continuous and Frechet differ-

entiable in %o (Q) .

Let ¥ be the one-dimensional subspace of
L*(9) spanned by # whose eigenvalue is 4. Let
W be the orthogonal complement of ¥ in Wo ().
Let P:We* (@) >V be the orthogonal projection of
W’ @) onto ¥, and [P W@ ->W pe the
orthogonal projection of %) onto W. Then
every element ¥ € wy? s expressed by

and W=({~Pt_ Then the problem
(2.1) is equivalent to

u=v+w,

where v=~P~u

~Av="Pb(v+w)" —a(v+w)” +s]
—Aw=(T-P)b(v+w) —a(v+w) +s5]

We treat these equations as a system of two
unknowns v and w.

Lemma 24 Llet 9<A4<b<4, and s>0. Then we

have

1) There exists a unique solution weW of the
equation

~Aw+ (I = P)[-b(v+w) +a(v+w) —5]=0 in W
If for fixed se® we put w=60(v.5) then @ is
continuous on V. In particular, @ satisfies a
uniform Lipschitz condition in v with respect to

the L’ norm (also the Sobolev norm ”'”%”).
2) If F:V >R is defined by F(5)= F+6(v,5),5),
then F has a continuous Frechet derivative DF
with respect to v and

DE(v,5)¥) = DF(v+0(v,5),s)7)=0

for all ¥eV. If Yo is a critical point of £, then

vy +8(%,$) is a solution of the problem (2.1) and
conversely every solution of (2.1) is of this form,

s=bta
Proof Let a<A<b<i, gnd s>0. Let °° 5

and &@)=b5"-al” If £(E)=8()-0  then
equation (2.6) is equivalent to
w=(=A-8)"(I=P)g((v+W)")+s) ... 2.7)
Since (-A-8)"(/-P) is compact self-adjoint linear
map from =PV (Q) into itself, the eigenvalues

1 1
are 4,—-& for nz2 Therefore its norm is 4,-6.

Since

81(¢2) - 8| < max{lp—al.J8]-|¢, =i

it follows that the right hand side of (2.7) defines,
for fixed Lipschitz

(I-PWy* () into itself with Lipschitz constant

El

velV a mapping of

7 <1 where

Bl 1
S s 3
YT TR
Ay —=
2
Therefore, by the contraction mapping principle,

veV, there

we(I-PWy () which satisfies (2.7). Since the

S does not depend on v and s, it

for given exists a  unique
constant
follows from standard arguments that if @)
denotes the unique "€ —=PW"(€)
(2.7), then € is continuous with respect to v. In
fact, if Wi =0(,8) and ¥, =0(v:,5) then we have

Iy = wall =|(=A = 8)7 (7 - P)(g, (v + W)~ g, (v, +w,))|

which solves

=7+ w) = (v, +w,)|
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<y, = Vol +w, - w,))
Hence we have

4

ﬂwl—WzIIﬂCHVn—vzll, Czlt}:,

where

which shows that @(%5) satisfies a uniform

Lipschitz condition in v with respect to the “’”W..‘"
~norm. With the above inequality we have

= Wallyas = -2 =87 - PX (g, +w) - g1 (v, +w,))|
= C]"(I - P)g (v, + wn)—gl("z + Wz))"
<C g‘ncvl )=y )|
b
<C 5 (v, ~v, ” + ”W1 - W)
b
<C, 5 A+ Oy, = vy

for some €, >0, Hence we have

[, —w, ||w;z <Gy -v, ”w,;v’

for some C; >0, This shows that #(":$) satisfies a

uniform Lipschitz condition in v with respect to

the
Let veV and 2=6(.s). If WeW 6 then from

(2.6) we see that

L[vw V& (I~ PYEr+w)* ~av+w)y =) Wl =0 (5 g

#? —norm.

LVw-VW=O

Since , We have

DE(v+0(v,s),s)(w)=0

F(s) has a

with respect to

for WweW, From Lemma 2.3,
continuous Frechet derivative DF

v

E

DF(v,5)(%) = DF(v+0(v,5),5)%) ....... (2.11)
for all VeV . Suppose that there exists Yo €V such

that DF(0$)=0 for some fixed $>0. Then it
follows from (2.11) that
DF(vy +0(v,,$),8)(v)=0

for all veV. Since (2.10) holds for all WeW and
Wy (s the direct sum of ¥ and W, it follows

that

DF(vy +0(v,,8),5) =0 55 Wy
u=vy+0(%,5) js a solution of (2.1).
Conversely, above procedure shows that if # is a
solution of (21) and v=Pu, then DF(v.5)=0 in
V. Q.E.D.

Therefore

Let a<A4<b<i, and s>0, From Lemma 22,
we see that (2.1) has a positive solution #(*)

which is of the form ®(x)=v+0(v,s)

Lemma 2.5 Let a<A4 <b<% and s>0. Then there
exists a small neighborhood B of ' in ¥V such
that Y=V% is a strict local point of maximum of
F.

Proof Let s>0, Then equation (2.1) has a

positive solution #*(*) which is of the form

u(x)=v, +0(»,5) >0 8(v;,s)eW  Since [+6, where
I is an identity map on V, is continuocus on V,
there exists a small open neighborhood B of %
in ¥V such that if veB, then v+O(»s>0.
Therefore if W=0(vs5) w, =6(v.5) and
v+ws=(v, +w)+({F+W) then we have

F(v,5)= F(v+w,s5)

= L[%W(v+w)‘2 —g\(w—w)* : —%\(w w)"|2 —slv+ul] dx

= L[-;-IV(vl+w,)+V(V+W)\ —%|(v,+wl)+(§7+W)|2
—s{(v +w)+ (T +)}] dx
=L %IV(Vl+Wl)|2—%l(vl+W1)|2_s(vl+wl)] dx
+L [V(v, +w,)- V(F + %) = b(v, + W) - (7 + )
—sG W d+ | [%[V(i:'+w)l2_§‘v+wﬁ dx

Here
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L[%\V(vl+w,)| -%\v,+wl|2—s|v,+w,)} dx

=F(v, +w,,5)
=F(v,,5)
and
LV(Vl +w,) - V(F + W) =b(y, +w,)- (F + %) - s(F+ %) dx

=L[V(vl+wl)—b(vl+w,)—s]-(i?+ﬁ7) d = 0

]

since Y1 +W¥ is a positive solution of (2.1). Since
V+# can be expressed by

VW=ed +e,p, ted +

we have

Fv,8)- F(v,s)= L[%|V(iz“+€fz)| —%]\7+W|2]dx

14

since @<4 <b<d, Therefore Y=V is a strict local

point of maximum of F. This completes the proof.
Q.E.D.

We now define the functional on %o

2
utl ——

. 1 2 p ay _2
F'(u) = F(u,0) = L[Equ[ -5 |

1 dx

corresponding to the equation
-Au+but —au =0
Then the critical points of F (#) coincide with
solutions of the equation
~Au+but —au =0 in Wo?,
If a<h<b<d then (2.12) has only the trivial
solution, and hence F (#) has only the ecritical
O'(»)=6(v0)eW pe

the unique solution of the equation

point #=0, Given veV Ilet

—Aw+(I=PY-b(v+w) +a(v+w)]=0 in W,

Let us define the reduced functional F " on

V, by F'(v+6°("). We note that we can obtain
the same result as Lemma 2.5 when we replace

6(.5) and FO+0(ns) by 6'0) and FO),
We also note that # (¥) has only

the critical point v=0,

respectively.

Lernma 2.6 For d>0 and veV, F'(dv)=d*F'(v),
Proof If veV satisfies

—Aw+ (I - P)(-b(v+6' (V)" +a(v+8'(m))=0 in W
then for d=>0,

— A(dw)+ (I - P~b(dv+d0" (V)" + a(dv+d8 (v)) )=0
in W. Therefore & (#)=d8"(v) for d>0. From the
definition of F () we see that F (du)=d’F'(u) for
ueH and d>0, Hence, for veV and d>0,
F'(du)=F'(dv+6' () =d’F (v+8" () = d’F' () Q.E.D.

Until now, we used the notation F,F and F’

which denote £+ (defined in (2.5)), F, and i':b,
respectively. In the following lemma we use the
latter notation.

Lemma 2.7 Let <A <b<Z Then there exists
v and v in ¥ such that % ) <0 and & ()>0,
Proof First, we vi€V  gsuch that
n+00>0 In this case ¥=00m:0=0_ Hence

vi+w=d$ and we have

choose

o= [ Lo - 2o +w[] a

(L :_b 2
—L [2|V(v,+w)| 2|V1+W| ] dx
i b
=L [5V|v1+w|-|v,+w[—~2-|v,+w|-lv,+wi] dx

1
=5 (4 -b)d} <0

since a<A<b<i,,
Next we choose Y2 €V such that V. +6(1,,0)<0,

In this case W=0(v;,0)=0 Hence v:+vw=ed,, and

we have
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F (vy) = L [%‘V(v2 +w)|2 —g‘(v2 +w)_~2] dx
1 2
= [ V0 +w) —%|v2+w|2] dx
=L [%V‘vz+w[-[v2+w]—-521-|v2 +W- vy +w]] dx

s%[(/h-a)e?po

since a<Ah <b<d,, Q.E.D.

Lemma 2.8 Let a<h<b<i and s>0. Then
F,(.5) is neither bounded above mnor bounded
below on V.

Proof From Lemma 2.7, F,'(" has negative (or
positive) value. Suppose that F'(") has negative

value and that F.9) is bounded below. Let Yo

denote a fixed point in V with ""0"=1. Let

@(nv,,s ot
J—Ll=%+w

A
wn_v0+ n

w, = nvy +8(nv,,8) and

Since @ is Lipschitzian, the sequence W s
bounded in Z2(€). We have PF(#.$)¥)=0 for all
n and arbitrary Y€W . Dividing this by 7 gives

. wt - S
V. -Vy—bw. y- -23] dx=0
[ tow Wy b y—awy= Y] .(213)

Setting Y ="Y», we know that {w,}7 is bounded in
Q). Hence "} is bounded in L(Q. So we
may assume that it converges weakly to an
element W eW. If we put w =W +v, and let

n—=o in (2.13), then we obtain

L [Vw" Vy—bw' y-aw' y] dx=0

for arbitrary ¥ €W. Hence W =6(v,,8) | If we sect

y=W, and dividing by 7in (2.13) , then we have

[, v,

w,

W, —a

2 4+
- b'w,,

W -] dv=0
n

Letting #—> in (2.15), we obtain

W,

. ~ + |~
lim L ‘Vw; w., W, +a

A=

“dx=lim [ b

H—m

W+ 2] dx
n

={ [b‘w"‘f&'+a»w'_’ﬁ'] dx

= L Vw' - Vii' dx

-
where we have used (2.14). Hence

tim [, [V,

2
dx

" ax=lim [ Vw,

2
dx

The assumption that F(,5) is bounded below
implies the existence of a constant M such that
Fy(nv,,5)/n* 2 M I n*

Letting »—>®, our previous reasoning shows that

F, (v)) = F, (v4,0) = lim F, (nv,,s)/n* 20

Since Yo was an arbitrary member of V with
ol =1 and

F, (lw0)= K, (v,5),
this contradicts the assumption (»:5) is negative
for some value of veV. Hence F, (%5) cannot be

bounded below. The proof that % %) cannot be

bounded above when F» () has positive value is

essentially same. Q.E.D.

Proof of the Theorem 2.1 Let a<4 <b<2, and

s>0, By Lemma 2.2 and Lemma 24, (2.1) has a
positive solution u(x)=v,+6(v,5). By Lemma 2.5,
there exists a small open neighborhood B of "1 in
¥V such that V=% is a strict local point of
maximum of F,(.9 . Since F,(» is not bounded
pelow, there exists a point = Y2 €V with “1 #*V: and
F,(v,5)= F,(",5) | The Rolle’s theorem and the fact

that ™) has a Frechet derivative imply that
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there exists a strict local point of maximum 7% .

Thus F, has at least two critical points. Therefore
(2.1) has at least two solutions, Q.E.D.
3. Conclusion

The multiplicity of solutions of a semilinear
elliptic equation under Dirichlet boundary condition
depends on the source term of the equation

—Au+bu" —au” = f(x)

Usually the existence of solutions of the equation
can be determined by degree theory or critical
point theory. In this paper we use the critical
point theory to the existence of the
solutions of the equation. Here we use the fact
that the critical points coincide with the weak
solutions of a partial differential equations. And
we use [tolle’s theorem to find multiplicity of the
Laplace equation.

We treat the source term as a constant load. In
this case, the Laplace equation has at least two
solutions when the relation between eigenvalues

and the coefficients a and b is a<4<b<4,,

prove
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