• 제목/요약/키워드: Fraud detection

검색결과 134건 처리시간 0.025초

보험사기행동모형 개발에 관한 실증적 연구 (An Empirical Study on the Development of Behavior Model of Insurance Fraud)

  • 이명진;김광용
    • 한국IT서비스학회지
    • /
    • 제6권2호
    • /
    • pp.1-18
    • /
    • 2007
  • Many researches have been done in insurance fraud as the amount and frequency of insurance fraud have been increasing continuously. In particular, the development of insurance fraud detection system using large database management techniques including data mining or link analysis based on visual method have been the main research topic in insurance fraud. However, this kinds of detection system were very ineffective to find unintentional insurance fraud happened by accident even though it was so good to find intentional and organized crime insurance fraud. Therefore, this research suggests insurance fraud as an ethical decision making and applies TPB(Theory of Planned Behavior) for the finding of reasons and prevention strategies of unintentional insurance fraud happened by accident. The results of research show that TPB is very appropriate model to explain the behavior of insurance fraud and that insurance agents force to do insurance fraud as affecting perceived behavior control. Therefore, education and pubic relations for insurance fraud are very effective for preventing insurance fraud and developing insurance service industry.

Role of Big Data Technology and Whistleblowing System in Distribution of Fraud Detection

  • Idrawahyuni;Gagaring PAGALUNG;Darwis SAID;Grace T. PONTOH
    • 유통과학연구
    • /
    • 제22권9호
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The purpose of the research is to find out and analyze the direct influence of forensic audits and auditor integrity on Fraud Detection and indirect effects through big data technology and whistleblowing systems in Indonesian BPK. The research method used is a survey research method. Surveys are primary data collection methods by asking 254 individual respondents. The unit of analysis is an individual, namely the BPK RI auditors. Results of this study found a forensic audit has a positive and significant effect on fraud detection, Auditor Integrity has a positive and significant effect on Fraud Detection; and forensic Audit has a positive and significant effect on big data technology, A forensic Audit has a positive and significant effect on the whistleblowing system, Integrity auditor has a positive and significant effect on big data technology, The whistleblowing system has a positive and significant effect on fraud detection, Big data technology has a positive and significant effect on fraud detection, The whistleblowing system has a positive and significant effect on fraud detection. Similar to how we used cross-sectional data, future research is urged to use an interview-based qualitative approach to avoid typical technique bias.

부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로 (A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products)

  • 김동성;김기태;김종우;박성기
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.93-108
    • /
    • 2014
  • 기업 의사 결정 지원을 위하여 거래 데이터를 다양한 관점에서 분석하고 활용하려는 노력과 관심들이 증가하고 있다. 이러한 노력들은 고객 관리나 마케팅에만 국한되는 것이 아니라 부정행위에 대한 감시와 탐지를 목적으로도 다양한 분석 방안들이 연구되고 있다. 부정행위는 기술의 발전을 악용하여 다양한 형태로 진화하고 있으며, 이에 따라 목적에 맞는 부정탐지 방안 연구와 적용을 통하여 탐지 효용의 극대화를 위한 노력의 필요성이 증가하고 있다. 이러한 연구 동향의 일환으로 본 연구에서는 대용량 거래 데이터가 저장 관리되고 있는 국내 최대 농수산물 유통 시장의 2008년부터 2010년까지 상장예외품목의 거래 가격을 분석하여 부정 탐지 규칙을 도출하였으며, 전문가 검증을 통하여 도출 된 규칙의 신뢰성을 확보하였다. 본 연구의 주요 부정거래 분석 방안으로는 정상적인 데이터들은 발생 확률이 높은 반면에 특이한 데이터들의 발생 확률은 낮다고 가정하는 통계적 접근을 통한 이상치 식별 방안을 활용하였다. 이에 따라 부정거래 분석 별로 정의 된 Z-Score 값보다 클 경우 부정거래 탐지 대상이 된다. 다만 상장예외품목 거래의 경우 취급 가능한 중도매인의 수가 제한되어 있으며, 일반적인 상장품목의 거래보다 거래량이 적기 때문에 소수의 이상치가 품목의 평균에 미치는 영향이 크다. 그 예로 다른 소수의 중도매인들이 해당 품목을 정상적인 가격에 거래하였더라도, 특정한 중도매인 한 명이 지나치게 비정상적인 가격에 거래할 경우 모든 거래들이 부정거래로 탐지 될 가능성도 있다. 이러한 문제를 해결하기 위하여 기존의 Z-Score의 개념을 활용하여 수정된 Z-Score(Self-Eliminated Z-Score)를 사용하였다. 또한 부정 유형별 탐지 규칙 관리와 활용을 위한 시스템 프로토타입(prototype) 개발을 수행하였다. 이를 통하여 실제 부정거래 탐지 업무에 적용할 수 있는 효과적인 방안을 제시하였고, 농수산 유통시장의 공정성 및 투명성 확보를 위한 관리 감독의 기능 강화가 가능할 것이다.

금융산업보안상 인적보안 취약요소인 업무부정의 발생징후와 적발방법에 관한 연구 (A study on the occupational fraud symptoms and detection methods for managing human element vulnerability in financial industry security)

  • 서준배;심희섭
    • 시큐리티연구
    • /
    • 제53호
    • /
    • pp.37-59
    • /
    • 2017
  • 본 연구는 산업보안상 인적취약요소로 분류되는 조직구성원에 의한 업무부정행위의 정의와 발생원인, 방지대책 등에 대하여 문헌연구를 통해 고찰하고, 선행연구를 통해 드러난 부정행위의 행동적 발생징후들에 대하여 은행, 보험사, 증권사 등 국내 금융산업에 종사하고 있는 근로자들에게 설문자료를 수집하여 기술통계, 요인분석, 로지스틱 회귀분석 등을 실시하였다. 분석결과, 부정행위의 발생징후들은 '경제적 동기', '비경제적 동기' 두 가지 요인으로 분류되었으며, '과도한 주식투자'와 '빈번한 이사 등으로 생활환경의 불안정'의 두 징후에 대한 정확성 평가와 실제 부정행위의 적발 경험이 통계적으로 유의미하게 연관되어 있는 것으로 확인되었다. 또한 내 외부 제보에 의해서 업무부정행위가 가장 많이 적발되는 것으로 나타났다. 본 연구의 분석결과를 토대로 향후 금융산업에서 발생할 수도 있는 업무부정행위를 조기에 발견하여 피해규모를 최소화도록 일조하는 데 연구의 목적이 있다.

  • PDF

Hybrid Fraud Detection Model: Detecting Fraudulent Information in the Healthcare Crowdfunding

  • Choi, Jaewon;Kim, Jaehyoun;Lee, Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.1006-1027
    • /
    • 2022
  • In the crowdfunding market, various crowdfunding platforms can offer founders the possibilities to collect funding and launch someone's next campaign, project or events. Especially, healthcare crowdfunding is a field that is growing rapidly on health-related problems based on online platforms. One of the largest platforms, GoFundMe, has raised US$ 5 billion since 2010. Unfortunately, while providing crucial help to care for many people, it is also increasing risk of fraud. Using the largest platform of crowdfunding market, GoFundMe, we conduct an exhaustive search of detection on fraud from October 2016 to September 2019. Data sets are based on 6 main types of medical focused crowdfunding campaigns or events, such as cancer, in vitro fertilization (IVF), leukemia, health insurance, lymphoma and, surgery type. This study evaluated a detect of fraud process to identify fraud from non-fraud healthcare crowdfunding campaigns using various machine learning technics.

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Financial Fraud Detection using Data Mining: A Survey

  • Sudhansu Ranjan Lenka;Bikram Kesari Ratha
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.169-185
    • /
    • 2024
  • Due to levitate and rapid growth of E-Commerce, most of the organizations are moving towards cashless transaction Unfortunately, the cashless transactions are not only used by legitimate users but also it is used by illegitimate users and which results in trouncing of billions of dollars each year worldwide. Fraud prevention and Fraud Detection are two methods used by the financial institutions to protect against these frauds. Fraud prevention systems (FPSs) are not sufficient enough to provide fully security to the E-Commerce systems. However, with the combined effect of Fraud Detection Systems (FDS) and FPS might protect the frauds. However, there still exist so many issues and challenges that degrade the performances of FDSs, such as overlapping of data, noisy data, misclassification of data, etc. This paper presents a comprehensive survey on financial fraud detection system using such data mining techniques. Over seventy research papers have been reviewed, mainly within the period 2002-2015, were analyzed in this study. The data mining approaches employed in this research includes Neural Network, Logistic Regression, Bayesian Belief Network, Support Vector Machine (SVM), Self Organizing Map(SOM), K-Nearest Neighbor(K-NN), Random Forest and Genetic Algorithm. The algorithms that have achieved high success rate in detecting credit card fraud are Logistic Regression (99.2%), SVM (99.6%) and Random Forests (99.6%). But, the most suitable approach is SOM because it has achieved perfect accuracy of 100%. But the algorithms implemented for financial statement fraud have shown a large difference in accuracy from CDA at 71.4% to a probabilistic neural network with 98.1%. In this paper, we have identified the research gap and specified the performance achieved by different algorithms based on parameters like, accuracy, sensitivity and specificity. Some of the key issues and challenges associated with the FDS have also been identified.

불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계 (Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem)

  • 박민형;신승준
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.593-601
    • /
    • 2022
  • 빈번하지는 않지만 한번 발생하면 상대적으로 큰 손실을 가져오는 사례를 통칭하여 부정 사례(Fraud)라고 부르며, 부정 탐지의 문제는 많은 분야에서 활용된다. 부정 사례는 정상 사례에 비해 상대적으로 관측치가 매우 적고 오분류의 비용이 월등히 크기 때문에 일반적인 이항분류 기법을 바로 적용할 수 없다. 이러한 경우에 활용할 수 있는 방법이 부정 탐지 지지 벡터기계(FDSVM)이다. 본 논문에서는 공변량이 함수형일 때 활용 가능한 함수형 부정 탐지 지지 벡터기계(F2DSVM)를 제안하였다. 제안된 방법을 사용하면 함수형 공변량을 가진 데이터에서 사용자가 목표하는 부정 탐지의 성능을 만족시키는 제약하에서 최적의 예측력을 가지는 분류기를 학습시킬 수 있다. 뿐만아니라, 통상적인 SVM과 마찬가지로, F2DSVM도 자취해의 조각별 선형성을 보일 수 있으며 이를 바탕으로 효율적인 자취해 알고리즘을 활용할 수 있고 분류기의 학습 시간을 크게 단축시킬 수 있다. 마지막으로, 반도체 웨이퍼 불량 탐지 문제에 제안된 F2DSVM을 적용해 보았고, 그 활용 가능성을 확인하였다.

결제로그 분석 및 데이터 마이닝을 이용한 이상거래 탐지 연구 조사 (A Survey of Fraud Detection Research based on Transaction Analysis and Data Mining Technique)

  • 정성훈;김하나;신영상;이태진;김휘강
    • 정보보호학회논문지
    • /
    • 제25권6호
    • /
    • pp.1525-1540
    • /
    • 2015
  • 금융 산업과 IT 기술의 결합으로 지불 방법이 간편화됨에 따라 소비자의 지불 수단이 현금 결제에서 신용카드, 모바일 소액결제, 앱카드 등을 이용한 전자결제로 변화되고 있다. 이에 전자금융결제를 악용하여 이상거래를 시도하는 사례가 증가하는 추세로, 금융사는 이상거래로부터 소비자를 보호하기 위해 FDS(Fraud Detection System)를 구축하고 있다. 이상거래 탐지 시스템은 실시간으로 이용자 정보와 결제 정보를 분석하여 높은 정확도로 이상거래를 식별하는 것이 목표이다. 본 연구에서는 결제로그 분석 및 데이터 마이닝을 이용한 이상거래 탐지 연구 동향을 조사하였으며, 이상거래 탐지에 사용된 데이터 마이닝 알고리즘을 정리하고 이상거래 탐지 연구를 사용된 데이터 셋, 알고리즘, 연구 관점으로 분류하였다.

신용카드 사기 검출을 위한 신경망 분류기의 진화 학습 (Evolutionary Learning of Neural Networks Classifiers for Credit Card Fraud Detection)

  • 박래정
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.400-405
    • /
    • 2001
  • This paper addresses an effective approach of training neural networks classifiers for credit card fraud detection. The proposed approach uses evolutionary programming to trails the neural networks classifiers based on maximization of the detection rate of fraudulent usages on some ranges of the rejection rate, loot minimization of mean square error(MSE) that Is a common criterion for neural networks learning. This approach enables us to get classifier of satisfactory performance and to offer a directive method of handling various conditions and performance measures that are required for real fraud detection applications in the classifier training step. The experimental results on "real"credit card transaction data indicate that the proposed classifiers produces classifiers of high quality in terms of a relative profit as well as detection rate and efficiency.

  • PDF