• Title/Summary/Keyword: Frame body

Search Result 538, Processing Time 0.021 seconds

The interaction between tool affordance and the sense of agency in the Extrastriate Body Area (선조외 신체 영역에서 도구 행동유도성과 행위 주체감의 상호작용)

  • Kim, Hyojeong;Park, Jeongho;Yi, Do-Joon
    • Korean Journal of Cognitive Science
    • /
    • v.24 no.1
    • /
    • pp.49-69
    • /
    • 2013
  • While we interact with other people or objects, the brain continuously updates our own body schema to recognize the agent of observed actions. The Extrastriate Body Area (EBA) provides an initial interface for the sense of agency by integrating visual inputs of body parts with internal signals related to self-generated body movements. Less is known, however, about how the functional use of tools contributes to such processes. Here, we investigated whether tool-specific affordance would differentially affect the neural responses in the EBA depending on the agency of imaginary actions. In each trial we presented a picture of an object in a rectangular frame. Objects were either the tools typically brought towards the body (body tools; e.g., telescope, earphones) or away from the body (world tools; e.g., pen, dice; Rueschemeyer, Pfeiffer, & Bekkering, 2010). Depending on the color of the frame, participants imagined either themselves or the other person using the tool (self vs. other conditions). These four types of trials were randomly intermixed with blank trials. As results, independently localized right EBA regions of interest showed greater activation when participants imagined themselves using body tools than using world tools whereas no such differential activations were found when they imagined the other person using the tools. The postscan test revealed no significant difference in vividness of imagery between the self and other conditions. Our results suggest that the EBA incorporates functional affordance of tools into the body schema in order to enhance the sense of agency and to guide our own actions.

  • PDF

Flexibility Effects of Frame for Vehicle Dynamic Characteristics (차량 동특성에 대한 프레임의 유연성 효과)

  • 이상범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • Previous method of computer simulation to predict the dynamic response of a vehicle has been based on the assumption that vehicle structure is rigid. If the flexibility of the vehicle structure becomes too large to ignore, rigid body assumption will no longer give good estimation of the dynamic characteristics. Therefore, in order to predict more precise vehicle dynamic characteristics, flexible multi-body dynamic analysis of a vehicle is necessary. This paper investigates dynamic characteristics of vehicle systems with flexible frames numerically. Joint reaction forces, vertical accelerations, pitch accelerations are analyzed for the vehicle systems with various flexible frames using multi-body dynamic analysis code and finite element analysis code.

Effect of Chassis Flexibility on Ride Quality (샤시의 강성이 운전석 승차감에 미치는 영향 분석)

  • 김광석;유완석;이기호;김기태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1996
  • Dynamic analysis of a three-axle heavy truck is carried out with rigid body model and flexible body model. To see the effects of chassis flexibility, the chassis is modeled as flexible body. The mass matrix, stiffness matrix, and vibration normal modes of the chassis are obtained by a finite element analysis program, and four vibration normal modes are used in the flexible body model. The vehicle model consisting of a frame, a cab, suspensions, an engine, a deck, a seat, and tires, has total 77 degrees of freedom. The result shows that the peaked acceleration in the flexible model is lower than that of the rigid body model.

  • PDF

The Trend of Materials Technology in New Generation Vehicles (차세대 자동차 개발과 재료기술)

  • 임종대
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.7-7
    • /
    • 2002
  • Recently social demand to achieve low fuel consumption and clean emission requires the development of new generation vehicle beyond the conventional vehicle concept. In this point, new generation vehicle is newly designed as electric vehicle, hybrid electric vehicle, fuel cell electric vehicle or 3 liter car etc. In order to develop new generation vehicle, it is very important to develop new materials and process technologies now. In this paper these new technologies are presented focusing on weight reduction specially. Steel body can be achieved 20-25% weight reduction by adoption of high strength steel and new process technologies, i.e tailored blank and hydroforming. Aluminium body can be achieved 40-50% weigt down by use of all aluminium monocoque body or aluminium space frame with aluminium panel. Plasitic composite body can be achieved 30% weight reduction comparing with conventional steel body.

  • PDF

A Study on the Body Welding Operation Scheduling Considering the Assembly Line's Input Sequence in Construction Equipment Manufacturing (건설기계 조립 라인 투입 순서를 고려한 제관 공정 생산 스케줄링에 관한 연구)

  • Kim, Ki-Dong;Choi, Ho-Sik
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.69-76
    • /
    • 2007
  • The body of an excavator, one sort of the construction equipment, consists of mainframe part, track frame part, boom part and arm part. The all parts are manufactured in the body welding operation. The scheduling in the body welding operation of a construction equipment manufacturing is to take all the various constraints into consideration. The offset time, due date, daily capacity of operations, daily jig's capacity, precedence relation, outsourcing, alternative resource and all of the shop floor environment should be considered. An APS(Advanced Planning & Scheduling) system is a proper and efficient system in such circumstance. In this paper, we present an APS system, the optimal scheduling system for the construction equipment manufacturing specifically for the body welding operation, using ILOG Solver/Scheduler. ILOG Solver/Scheduler is a general purposed commercial software which supports to find a feasible or optimal solution using object oriented technique and constraints satisfaction programming, given constraints and objectives.

  • PDF

Vehicle Body Design of Armored Robot for Complex Disaster (복합 재난을 위한 장갑형 로봇의 차체 설계)

  • Park, Sang Hyun;Jin, Maolin;Kim, Young-Ryul;Kim, Doik;Kim, Jun-Sik;Shin, Dong Bin;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • In this paper, a design for a vehicle body of an armored robot for complex disasters is described. The proposed design considers various requirements in complex disaster situations. Fire, explosion, and poisonous gas may occur simultaneously under those sites. Therefore, the armored robot needs a vehicle body that can protect people from falling objects, high temperature, and poisonous gas. In addition, it should provide intuitive control devices and realistic surrounding views to help the operator respond to emergent situations. To fulfill these requirements of the vehicle body, firstly, the frame was designed to withstand the impact of falling objects. Secondly, the positive pressure device and the cooling device were applied. Thirdly, a panoramic view was implemented that enables real-time observation of surroundings through a number of image sensors. Finally, the cockpit in the vehicle body was designed focused on the manipulability of the armored robot in disaster sites.

ALUMINUM SPACE FRAME B.I.W. OPTIMIZATION CONSIDERING MULTIDISCIPLINARY DESIGN CONSTRAINTS

  • KIM B. J.;KIM M. S.;HEO S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.635-641
    • /
    • 2005
  • This paper presents an ASF (Aluminum Space Frame) BIW (Body in White) optimal design, which minimizes weight and satisfies multidisciplinary constraints such as static stiffness, vibration characteristics, low-/high-speed crash, and occupant safety. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method were used for efficient RSM modeling. Likewise, the ALM method was used to solve the approximate optimization problem. The approximate optimum was sequentially added to remodel the RSM. The proposed optimization method uses only 20 analyses to solve the 11-design variable problem. Moreover, the optimal design can achieve $15.6\%$ weight reduction while satisfying all the multidisciplinary design constraints.

Evaluation of static and fatigue strength for end trailer bogie (단부객차대차의 정적강도 및 피로강도 평가)

  • Cho, Woo-Kang;Han, Sung-Wook;Song, Si-Yeop;Park, Guen-Soo;Park, Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.155-161
    • /
    • 2007
  • A bogie frame is typical safty part of railway vehicle. Main performance of a bogie frame is to support a car body and passenger weight and transfer traction and braking force. This paper is to evaluate the static strength and fatigue strength for the end trailer bogie with UIC 615-4 code. Therefore stress analysis of the end trailer bogie frame has been performed for various loading condition according to the UIC 615-4 code and haigh diagram is used for evaluation of fatigue strength. By the results of these analysis, static and fatigue strength of the end trailer bogie is satisfied with a applied criterion.

  • PDF

A Study on the Textile for Protective Clothing of Fire Fighters (한국 소방대원 방수피복의 소재특성에 관한 비교 연구)

  • 정정숙;이연순
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.5
    • /
    • pp.15-24
    • /
    • 2002
  • The following research conclusions were made, relative to the experiments of the textiles of fire fighters Protective Clothing. 1. When the body protection efficiency such as the thickness, the strength and heat resistance are considered, Nomex(N) is tuned out the best outer shelf, Gore-tex(KG) the best moisture barrier, and Wool-felt(WC) the best thermal barrier. 2. In the hygienic and sanitary efficiency also, N is turned out the best outer shelf, KG the best moisture barrier, and WC the best thermal barrier in its degree of water resistance, water vapour permeability, and air permeability. 3. In the washing and maintenance efficiency, too. N is turned out the best outer shell, KG the best moisture barrier, and WC the best thermal barrier, being considered the material's rate of contraction, the changing rate of frame resistance, water resistance, and water vapour permeability. 4. When considered the frame resistance against the reflection tape and reflection efficiency, O is the best material for it marks the highest score in the frame resistance and reflective effect.

Dynamic Stress Analysis of Flexible Multibody using DADS (DADS를 이용한 유연 다물체의 동응력 해석)

  • Ahn, K.W.;Seo, K.H.;Hwang, W.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF