• 제목/요약/키워드: Frame Stress

검색결과 653건 처리시간 0.032초

LCD 로봇 주요 프레임에 대한 설계 최적화 및 용접부 수명평가 (Design Optimization and Endurance Assessment of Weld Area for LCD Robot Frame)

  • 한성욱;강윤식;김태현;김상현
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.89-95
    • /
    • 2017
  • 제품을 개발하는데 있어서 경량화와 원가절감이라는 두가지 요소는 가장 중요한 화두이다. 특히 대형 LCD 로봇은 최대 $3{\times}3m$ 이상의 글라스를 7m 높이까지 상하, 전후로의 직선운동과 선회축을 중심으로한 회전운동을 하면서 작업공정간 이송을 가능케 하는 대형 구조물이다. 따라서 지나치게 무거울 경우에는 클린룸내 설치에 문제가 있을 수 있고 반송물의 정확한 이송을 위하여는 고강성이 요구되며 대량 생산을 위한 연속작업을 충분히 감당할 수 있는 내구강도를 확보하여야 한다. 따라서 경량화, 고강성, 고강도 제품에 대한 요구는 갈수록 증가하고 있다. 현재 개발되고 있는 11 세대 대형 LCD 승강프레임은 이러한 요구조건을 충족하기 위하여 최적설계 기법을 적용하여 기존 제품 대비 경량화와 고강성 요구조건을 만족하였으며 용접부에 대한 상세 수명평가로 내구강도에 대한 신뢰성을 확보하였다.

동력학 시뮬레이션에 의한 다축 랜덤하중 하에서 자동차 서브프레임의 고 되풀이수 피로손상 평가 (High Cycle Fatigue Damage under Multiaxial Random Loading through Dynamic Simulation for an Automotive Sub-Frame)

  • 이학주;강재윤;최병익;김주성
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.946-953
    • /
    • 2003
  • A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of an automotive sub-frame. Elastic Multi Body Simulation (MBS) has been applied in order to determine the multiaxial load histories. The stresses due to these loads have been given by FE computation. These results have been used as the input for the multiaxial fatigue analysis. For the assessment of multiaxial high cycle fatigue damage, the signed von Mises, the signed Tresca, the absolute maximum principal stress and critical plane methods have been employed. In addition, the biaxiality ratio, a$\sub$e/, the absolute maximum principal stress, $\sigma$$\sub$p/ and the angle, $\phi$$\sub$P/, between $\sigma$$\sub$1/ and the local x-axis, have been calculated to evaluate the stress state at each node.

On the effect of GFRP fibers on retrofitting steel shear walls with low yield stress

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Bayat, M.
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1453-1461
    • /
    • 2015
  • In this article the non-linear behavior of the shear wall with low yield stress retrofitted with Glass Fiber Reinforced Polymer (GFRP) is investigated under pushover loading. The models used in this study are in ${\frac{1}{2}}$ scale of one story frame and simple steel plates with low yield stress filled the frame span. The models used were simulated and analyzed using finite elements method based on experimental data. After verification of the experimental model, various parameters of the model including the number of GFRP layers, fibers positioning in one or two sides of the wall, GFRP angles in respect to the wall and thickness of the steel plate were studied. The results have shown that adding the GFRP layers, the ultimate shear capacity is increased and the amount of energy absorbed is decreased. Besides, the results showed that using these fibers in low-thickness plates is effective and if the positioning angle of the fibers on the wall is diagonal, its behavior will improve.

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권2호
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Shi-chao Duan;Hong-chen Wang;Xing-You Yao;Yu-hui Zheng
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.253-267
    • /
    • 2023
  • The bearing capacities resisted by the two-bay beams of multi-story planar frames with unequal spans under column removal scenarios differ considerably owing to the asymmetric stress on the left and right beams connected to the failed column and cause the potential for beams with larger span-to-depth ratios to be unable to exert effectively, which is disadvantageous for resisting the vertical load in unequal-span frame structures. To address this problem, the structural measure of adding braces to the weak bays of multi-story unequal-span frames was proposed, with the objective of achieving a coordinated stress state in two-bay beams with unequal spans, thereby improving the collapse resistance of unequal-span frame structures. Before conducting the numerical simulation, the modeling methods were verified by previous experimental results of two multi-story planar frames with and without steel braces. Thereafter, the effects of the tensile and compressive braces on the collapse behavior of the frame structures were elucidated. Then, based on the mechanical action laws of the braces throughout the collapse process, a detailed design method for improving the collapse resistance of unequal-span frame structures was proposed. Finally, the proposed design method was verified by using sufficient example models, and the results demonstrated that the design method has good application prospects and high practical value.

충격하중에 의한 용접구조물의 강도 증가에 관한 연구 (A Study on the strength improvement in weldment by the impact loading)

  • 이천수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 1998
  • It is well known that during the oxygen cutting residual thermal stresses are produced in weldment. Surface compressive residual stress is one of reasons for improvement on fatigue durability. To reduce the residual stress and improve the fatigue strength applied the impact loading in oxygen cutting frame. After applying the impact loading, redistribution of residual stress was measured by cutting method and tested fatigue tests.

  • PDF

원형기둥-상자형보 접합부의 응력평가식 개발 (Development of Stress Evaluation Equation of Circular Column-Box Beam Connections)

  • 이주혁;김정환;박용명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

설계자 만족도 매트릭스를 이용한 골조 구조물의 소성해석법 (Plastic Design Method for Moment Resisting Frame based on Designer's Acceptable Matrix)

  • 송기영;이승재;오상훈;강창훈
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.165-169
    • /
    • 2006
  • This study presents a new stress analysis method to be substituted for the elastic analysis in such a plastic design procedure. This method is accompanied by an efficient mathematical tool which can be easily handled by personal computer. The method also easily accepts arbitrary strategies by the designer for selection member size.

  • PDF

종류별 이륜차 프레임에 대한 구조해석 (Structural Analysis for Bicycle Frame by Type)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.146-155
    • /
    • 2012
  • This study aims to analyze durability by comparing displacement on vibration at driving bicycle frame models of 1, 2, 3 and 4. Among maximum equivalent stresses at 4 kinds of models, model 1 has highest value with 410.39 MPa and becomes 30 times than model 4 with lowest value. The natural frequency number at Model 4 increases more than the other models. Among four models, the number of frequency at model 1 becomes lowest at harmonic vibration with real loading condition. In cases of four kinds of models, the maximum stress is shown near the assembly of rear wheel and the maximum displacement is shown near saddle assembly at this harmonic condition. The structural result about this study can be effectively utilized on the design of bicycle frame by investigating durability and prevention against its damage.

전동차 구동대차의 구조해석 및 하중시험 비교 고찰 (A Comparision on Structure Analysis and Load Test of Driving Bogie for Electrical Multiple Unit)

  • 김원경;윤성철;권성태;박옥정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.404-409
    • /
    • 2005
  • This paper describes the result of structure analysis and load test for bogie frame. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis and static load test. The analysis and test results have been very safety and stable for design load conditions.

  • PDF