• 제목/요약/키워드: Frame Stress

검색결과 655건 처리시간 0.034초

용접에 의한 자동차용 Frame의 변형과 잔류 응력 분석 (Deformation and Residual Stress of Automotive Frame by Welding)

  • 박태원;김기주;한창평;이영숙;임종한
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.113-117
    • /
    • 2011
  • The frame for automotive assembly can be deformed and remained on the residual stress due to high temperature thermal attacks when in welding. The frame deformation can be made to problems when in assembly with body and the residual stress can affect the negative effect on durability performance of the automobile. In order to analyze the frame deformation, the simplified test frame which had the similar shape (form) of the real automotive frame was fabricated. The contactless optical 3D scanner was used for the shape difference measurement of the frame between before and after the welding. The FE-model of the test frame was composed and the heat transfer and thermal stress simulation were performed. The simulated results were compared with the measured results for the reference of the frame design. The deformation shape of the frame by simulation was in good agreement with that by the experimental measurement.

용접 순서의 변화에 따른 자동차용 Frame의 변형과 잔류 응력 분석 (Deformation and Residual Stress Analysis of Automotive Frame Following as Welding Sequency Variation)

  • 박태원;김기주;원시태;한창평
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.50-57
    • /
    • 2013
  • The high temperature thermal attacks in welding can affect the residual stress of a frame for automotive assembly accompanying frame deformation. Also the residual stress can induce the negative effect on durability performance of the automobile. In order to analyze the frame deformation, the simplified test frame which had the similar shape (form) of the real automotive frame was fabricated. The contactless optical 3D scanner was used for the shape difference measurement of the frame between before and after the welding. The FE-model of the test frame was composed and the deformation and residual stress simulation were performed. The simulated results were compared with the measured results for the reference of the frame design following as the variation of welding sequency. The deformation shape of the frame by simulation was in good agreement with that by the experimental measurement. In addition, the optimized welding sequency with reduced deformation after welding could be achieved through these analyses.

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • 김태훈;양동민;하윤수
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF

다축하중을 받는 대차프레임의 피로해석에 관한 연구 (A Study on the Fatigue Analysis of Bogie Frame under Multiaxial Loading)

  • 이상록;이학주;한승우;김경식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.330-337
    • /
    • 1998
  • Bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the multiaxial loading condition induced in real operation make it difficult to design the bogie frame against the fatigue. In this study, multiaxial fatigue criteria were reviewed. Stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 615-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface model ling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

커플링 모델을 이용한 대차프레임 용접부 응력 해석 (Stress Analysis on Weld Zone of Railway Bogie Frame Using Coupling Model)

  • 정순철;전현규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.830-835
    • /
    • 2007
  • In this paper, stress analyses using shell and solid elements on weld zone of railway bogie frame were performed. To calculate stress distribution on weld zone, a coupling model using shell and solid elements was suggested. For this purpose, we performed specimen analyses on T-type solid and shell model of T-type panels which were modeled using shell elements, solid elements and coupled elements, respectively. The result showed that the stress concentration at weld zone was occurred in solid model, but it didn't occur in shell model. And the stress distribution of coupled model was similar to that of solid model. Also, we applied the coupled modeling method on the analysis on weld zone of bogie frame. The stress distribution of coupled model showed much higher compared to that of shell only model. Therefore, the coupled model method is highly recommended for the stress analysis in weld zone of bogie frame.

  • PDF

동력차용 대차프레임의 피로강도평가 (Fatigue Strength Evaluation of Bogie Frame for Power Car)

  • 이학주;한승우;;이상록
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.

유조선(油槽船)의 Web Frame에서의 응력분포(應力分布) (On the Stress Distribution in a Web Frame of Tanker)

  • 임상전
    • 대한조선학회지
    • /
    • 제9권1호
    • /
    • pp.7-14
    • /
    • 1972
  • Recently, the matrix method has become almost universal tool to solve various engineering problems in conjunction with the rapid development of high speed electronic computers. The method also has been introduced to ship structure analysis in past few years. This paper treats a method to obtain an approximate solution for stress distribution in a web frame of oil tankers. The method is designed to use relatively small computer. The procedure consists of two steps. In the first step, the web frame is idealized to a plane frame of slender members as shown in Fig. 2. Then, the plane frame is analyzed with a matrix method to determine forces and moments in each members. In the second step, the original shape of the web frame is restored and any portion of the frame, in which the stress distribution is desired, is isolated as shown in Fig. 3. Then, again, a finite element method is used to determine the stress distribution in the isolated portion. In this work, IBM 1130 computer in the computation center, SUN has been used. A numerical example with scantlings of an actual ship is worked out to prove the validity of this method.

  • PDF

내재해성이 우수한 비닐하우스골조 구조시스템 개발에 관한 연구 (A study on Development of Stress Tolerant Structural System in the Frame of Greenhouses)

  • 심종석;이춘호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-13
    • /
    • 2012
  • The frame of pipe greenhouses in Korea have been collapsed increasingly due to very weak in structure caused by the heavy snow and strong wind. In order to reduce the collapse of green houses, it is urgent to develop the new structural system in stress tolerant greenhouses. Therefore, this paper performed the structural analysis of greenhouse frame in accordance with snow loads and wind loads. Three type models in structural frame configuration of greenhouses, that is, existing type, diagrid type, and honeycomb type are selected. It was classfied the section shape of structural frames in greenhouses into arch style, standard style, and diagonal standard style. As a result of this paper, it was verified that the structural system of diagrid type is better than that of existing type against snow loads and wind loads in the frame of greenhouses.

디젤기관차 대차프레임의 하중이력 측정 및 피로수명평가 (The Fatigue life evaluation and load history measurement for Bogie frame of locomotive)

  • 서정원;권석진;함영삼;권성태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.378-383
    • /
    • 2008
  • Bogie frame of the locomotive is an important structural member for the support of vehicle loading. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame. Strength analysis has been performed by finite element analysis. From these analysis, stress concentration areas were investigated. For evaluation of the loading conditions, dynamic stress were measured by using strain gage. It has been found that the stress and strain due to the applied loads were multi-axial condition according to the location of strain gage. The fatigue strength evaluations of the bogie frame are performed to investigate the effect of the multi-axial load through the employment of the critical plane approach.

  • PDF