• Title/Summary/Keyword: Frame Stiffness

Search Result 850, Processing Time 0.021 seconds

Micro-concrete composites for strengthening of RC frame made of recycled aggregate concrete

  • Marthong, Comingstarful;Pyrbot, Risukka N.;Tron, Stevenly L.;Mawroh, Lam-I D.;Choudhury, Md. Sakil A.;Bharti, Ganesh S.
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.461-468
    • /
    • 2018
  • In this paper, to access the suitability of recycled aggregate for structural applications, concrete strength i.e., compressive, tensile and flexural strength were evaluated and compared with those specimens made of natural aggregates. Test results indicated that 30 to 42% of the mentioned strength decreases. To study the performance of frame structures made of recycled aggregate concrete (RAC) two reinforced RAC frames were prepared and tested under monotonic loading. The joint regions of one of the RAC frame were casted with micro-concrete. A reference specimen was also prepared using natural aggregate concrete (NAC) and subjected to a similar loading condition. The RAC frame resulted in a brittle mode of failure as compared to NAC frame. However, the presence of a micro-concrete at the joint region of an RAC frame improved the damage tolerance and load resisting capacity. Seismic parameter such as energy dissipation, ductility and stiffness also improves. Conclusively, strengthening of joint region using micro-concrete is found to have a significant contribution in improving the seismic performance of an RAC frame.

Elastic Analysis of Steel Frame with Semi-rigid Connections using the Log Model (로그 모델을 사용한 반강접 철골 골조의 탄성 해석)

  • Lee, Sang Sup;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.527-535
    • /
    • 2000
  • Accurate determination of the relative restraint of beam-to-column connections is important for both the strength and the serviceability of structural frames. But steel frame analysis is carried out under the assumption that the connections are either fixed or pinned. Overestimating the connection restraint can result in underestimating lateral sway and underestimating the connection restraint can lead to underestimating forces developed in the beams and columns. This implies that the exact stiffness of connections as well as the geometric effects should be considered in the frame analysis and the overall behavior of connections could be described adequately. Therefore, the stiffness matrix which is able to consider the moment-rotation of connection was derived previously and the modified exponential model, power model and the proposed log model are adopted for modeling the semi-rigid connections. The main purpose of this study is to examine the feasibility of the derived stiffness matrix and to show the validity of log model proposed.

  • PDF

An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall (블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구)

  • Choi, Chang-Sik;Lee, Hye-Yeon;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.199-206
    • /
    • 2005
  • In many other countries framed structures with inadequate lateral strength and stiffness have been strengthened by providing reinforced concrete infilled wall. There is a general agreement among researchers those infilled walls have 3-5times greater lateral strength compared with bare frame. The main objective of this research is to investigate the behavior and strength of reinforced concrete frames infilled with concrete block and cast-in-place reinforced concrete panels used for strengthening the structure against seismic action. For this purpose three 1/3 scale, one-bay, one-story reinforced concrete infilled frames were tested under reversed cyclic loading simulating the seismic effect. The results indicate that infilled walls increase both strength and stiffness significantly under lateral loads. Especially Strength capacity and initial stiffness of CIP infilled wall increased 3.8 times and 6.6 times higher than lightly reinforced concrete frame.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Connection stiffness and natural frequency of DuraGal lightweight floor systems

  • Zhao, X.L.;Taplin, G.;Alikhail, M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.269-284
    • /
    • 2003
  • This paper reports a series of component tests on a lightweight floor system and a method to predict the natural frequency of the floor using a frame analysis program. Full-scale floor tests are also briefly described. DuraGal steel Rectangular Hollow Sections (in-line galvanised RHS) are used as joists, bearers and piers in DuraGal lightweight floor systems. A structural grade particleboard is used as decking. Connection stiffness between different components (bearer, joist, pier and floor decking) was determined. A 40% composite action was achieved between the RHS joist and the particleboard. Both 2D and 3D models were developed to study the effect of connection stiffness on predicting the natural frequency of DuraGal lightweight floor systems. It has been found that the degree of shear connection between the bearer and the joist has a significant influence on the floor natural frequency. The predicted natural frequencies are compared with measured values from full scale floor testing.

Structural Design of Door Assembly to Apply Tailor Welded Blanks Technique (합체박판 성형기법의 적용을 위한 자동차 도어의 구조 설계)

  • 황우석;이덕영;하명수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.228-233
    • /
    • 2002
  • TWB(Tailor Welded Blanks) is one of the recent techniques to reduce the weight and cost of the body members. To apply the TWB technique, we must decide the position of the welding line and the thickness of the welded blanks. Although many researchers have tried to check the formability of welded blanks, there are not so many researches from the structural point of view. In this paper, the TWB technique is applied to combine the door inner panel and the hinge face panel into one piece. The finite element structural analysis of the door assembly leads to the final design of the tailor welded door inner panel, which shows the mass reduction of 1.08kg without the sacrifice of the structural stiffness. The structural stiffness analysis includes the frame stiffness analysis, the belt line stiffness analysis, the door sagging analysis and the vibration analysis.

The Finite element with Normal Rotational Degree Freedoms (유한요소의 Normal rotation 연구)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.85-89
    • /
    • 2004
  • A frame element embedded normal to a shear wall or slab (shell element) is common in the structural systems. In that case there is a need for a membrane or shell element to have a normal rotation degree of freedom at each node in order to have a good result of stresses. Even if Many other people studied this area, All man, Cook and Sabir are representative investigators in this area. In this research paper, Sabir's methods of vertex rotation stiffness matrix in a membrane element are studied. New stiffness of vertex rotation are proposed by taking advantage of beam stiffness theory. Rectangular elements stiffness with rotational degree of freedom are compared in accuracy ratio each other.

  • PDF

Damage detection in jacket type offshore platforms using modal strain energy

  • Asgarian, B.;Amiri, M.;Ghafooripour, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.325-337
    • /
    • 2009
  • Structural damage detection, damage localization and severity estimation of jacket platforms, based on calculating modal strain energy is presented in this paper. In the structure, damage often causes a loss of stiffness in some elements, so modal parameters; mode shapes and natural frequencies, in the damaged structure are different from the undamaged state. Geometrical location of damage is detected by computing modal strain energy change ratio (MSECR) for each structural element, which elements with higher MSECR are suspected to be damaged. For each suspected damaged element, by computing cross-modal strain energy (CMSE), damage severity as the stiffness reduction factor -that represented the ratios between the element stiffness changes to the undamaged element stiffness- is estimated. Numerical studies are demonstrated for a three dimensional, single bay, four stories frame of the existing jacket platform, based on the synthetic data that generated from finite element model. It is observed that this method can be used for damage detection of this kind of structures.

Softening Analysis of Reinforced Concrete Frames (철근콘크리트 골조의 연성화 해석)

  • 나유성;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.438-443
    • /
    • 1998
  • Softening os the name used for decreasing bending moment at advanced flexural deformation. To accommodate softening deformation in analysis, it is assumed that a hinge has finite length. The softening analysis of R/C frames relies on the primary assumption that softening occurs over a finite hinge length and that the moment-curvature relationship for any section may be closely described by a trilinear approximation. A stiffness matrix for elastic element with softening regions are derived and the stiffness matrix allows extension of the capability of an existing computer program for elastic-plastic analysis to the softening situation. The effect of softening on the collapse load of R/C frame is evaluated.

  • PDF

Crush Characteristics of Thin-walled Rectangular Tube (박판사각튜브의 압괴 특성)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, crush characteristics of thin-walled rectangular tube is investigated. The stiffness of the element is obtained from analytical moment-rotation relationship and approximated load-deflection relationship of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state each element for bending and compression.

  • PDF