• Title/Summary/Keyword: Frame Camera

Search Result 613, Processing Time 0.031 seconds

A New Hand-eye Calibration Technique to Compensate for the Lens Distortion Effect (렌즈왜곡효과를 보상하는 새로운 Hand-eye 보정기법)

  • Chung, Hoi-Bum
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.596-601
    • /
    • 2000
  • In a robot/vision system, the vision sensor, typically a CCD array sensor, is mounted on the robot hand. The problem of determining the relationship between the camera frame and the robot hand frame is refered to as the hand-eye calibration. In the literature, various methods have been suggested to calibrate camera and for sensor registration. Recently, one-step approach which combines camera calibration and sensor registration is suggested by Horaud & Dornaika. In this approach, camera extrinsic parameters are not need to be determined at all configurations of robot. In this paper, by modifying the camera model and including the lens distortion effect in the perspective transformation matrix, a new one-step approach is proposed in the hand-eye calibration.

  • PDF

Object Tracking And Elimination Using Lod Edge Maps Generated from Modified Canny Edge Maps (수정된 캐니 에지 맵으로부터 만들어진 LOD 에지 맵을 이용한 물체 추적 및 소거)

  • Park, Ji-Hun;Jang, Yung-Dae;Lee, Dong-Hun;Lee, Jong-Kwan;Ham, Mi-Ok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.171-182
    • /
    • 2007
  • We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera and changing background. Then we present a method to eliminate the tracked contour object by replacing with the background scene we get from other frame. First we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image frame and replace the tracked object in a scene by a background image from other frame that is not occluded by the tracked object. Our tracking method is based on level-of-detail (LOD) modified Canny edge maps and graph-based routing operations on the LOD maps. We get more edge pixels along LOD hierarchy. Our accurate tracking is based on reducing effects from irrelevant edges by selecting the stronger edge pixels, thereby relying on the current frame edge pixel as much as possible. The first frame background scene is determined by camera motion, camera movement between two image frames, and other background scenes are computed from the previous background scenes. The computed background scenes are used to eliminate the tracked object from the scene. In order to remove the tracked object, we generate approximated background for the first frame. Background images for subsequent frames are based on the first frame background or previous frame images. This approach is based on computing camera motion. Our experimental results show that our method works nice for moderate camera movement with small object shape changes.

Camera Motion and Structure Recovery Using Two-step Sampling (2단계 샘플링을 이용한 카메라 움직임 및 장면 구조 복원)

  • 서정국;조청운;홍현기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.347-356
    • /
    • 2003
  • Camera pose and scene geometry estimation from video sequences is widely used in various areas such as image composition. Structure and motion recovery based on the auto calibration algorithm can insert synthetic 3D objects in real but un modeled scenes and create their views from the camera positions. However, most previous methods require bundle adjustment or non linear minimization process [or more precise results. This paper presents a new auto' calibration algorithm for video sequence based on two steps: the one is key frame selection, and the other removes the key frame with inaccurate camera matrix based on an absolute quadric estimation by LMedS. In the experimental results, we have demonstrated that the proposed method can achieve a precise camera pose estimation and scene geometry recovery without bundle adjustment. In addition, virtual objects have been inserted in the real images by using the camera trajectories.

Video Deblurring using Camera Motion Estimation and Patch-wise Deconvolution (카메라 움직임 추정 및 패치 기반 디컨볼루션을 이용한 동영상의 번짐 현상 제거 방법)

  • Jeong, Woojin;Park, Jin Wook;Lee, Jong Min;Song, Tae Eun;Choi, Wonju;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.130-139
    • /
    • 2014
  • Undesired camera shaking can make a blur effect, which causes a degradation of video quality. We propose an efficient method of removing the blur effects on video captured from a single camera. The proposed method has a sequential process that is applied to each frame. The first stage is to estimate the camera motion for each frame. In order to estimate the camera motion, we compute the optical flow using 3 consecutive frames. Then a patch-wise image deconvolution is applied. During the deconvolution, edge prediction is used to improve the quality of image deconvolution. After patch-wise image deconvolution, deblurred patches are integrated into an image to produce a deblurred frame. The above process is performed for each frame. The experimental result shows that the proposed method removes the blur effect efficiently.

Thermographic assessment on temperature change of skin surface in frame fitting point (열화상 카메라를 활용한 frame fitting point의 표면 온도 분석)

  • Joo, Byung Hyuk;Park, Chang Won
    • Journal of Korean Clinical Health Science
    • /
    • v.9 no.1
    • /
    • pp.1462-1468
    • /
    • 2021
  • Purpose; The purpose of this study is to objectively identify and quantify the wearer's feelings of wearing glasses. Methods: The temperature of the skin on the nose ridges and ear, and the area where the glasses were seated, was measured using a thermal imaging camera. Results: Before wearing the glasses, the temperature of the skin surface on the nasal ridge was 34.908 ± 0.875 ℃ and the temperature of the ear region was determined as 31.981 ± 0.549 ℃. The changed temperature measured at 5 minutes later after taking off the glasses showed that the nasal ridge was determined as 35.467 ± 0.342 ℃ and the ear area was determined as 32.994 ± 0.412 ℃ (p<0.05). Conclusions: In this experiment, it was revealed that the glasses cause discomfort and heat in the fitting area. It was the first attempt to study objectively and scientifically. Analysis of frame fitting points by using thermal camera is expected to be helpful when consulting a sensitive person about changes in the fit of glasses.

Motion Compensated Subband Video Coding with Arbitrarily Shaped Region Adaptivity

  • Kwon, Oh-Jin;Choi, Seok-Rim
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.190-198
    • /
    • 2001
  • The performance of Motion Compensated Discrete Cosine Transform (MC-DCT) video coding is improved by using the region adaptive subband image coding [18]. On the assumption that the video is acquired from the camera on a moving platform and the distance between the camera and the scene is large enough, both the motion of camera and the motion of moving objects in a frame are compensated. For the compensation of camera motion, a feature matching algorithm is employed. Several feature points extracted using a Sobel operator are used to compensate the camera motion of translation, rotation, and zoom. The illumination change between frames is also compensated. Motion compensated frame differences are divided into three regions called stationary background, moving objects, and newly emerging areas each of which is arbitrarily shaped. Different quantizers are used for different regions. Compared to the conventional MC-DCT video coding using block matching algorithm, our video coding scheme shows about 1.0-dB improvements on average for the experimental video samples.

  • PDF

A development of the simple camera calibration system using the grid type frame with different line widths (다른 선폭들로 구성된 격자형 교정판을 이용한 간단한 카메라 교정 시스템의 개발)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.371-374
    • /
    • 1997
  • Recently, the development of computer achieves a system which is similar to the mechanics of human visual system. The 3-dimensional measurement using monocular vision system must be achieved a camera calibration. So far, the camera calibration technique required reference target in a scene. But, these methods are inefficient because they have many calculation procedures and difficulties in analysis. Therefore, this paper proposes a native method that without reference target in a scene. We use the grid type frame with different line widths. This method uses vanishing point concept that possess a rotation parameter of the camera and perspective ration that perspect each line widths into a image. We confirmed accuracy of calibration parameter estimation through experiment on the algorithm with a grid paper with different line widths.

  • PDF

Body Segmentation using Gradient Background and Intra-Frame Collision Responses for Markerless Camera-Based Games

  • Kim, Jun-Geon;Lee, Daeho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.234-240
    • /
    • 2016
  • We propose a novel framework for markerless camera-based games. By using a visual camera, our method may yield robust human body segmentation with high performance comparable to the segmentation using depth cameras. The edges of human bodies are detected by subtracting gradient backgrounds, and human body regions are segmented by the operations based on mathematical morphology. Collisions between detected regions and virtual objects are determined by finding the colliding time using intra-frame positions of virtual objects. Experimental results show that the proposed method may produce robust segmentation of human bodies, thereby and the collision responses are more accurate than previous methods. Therefore, the proposed framework can be widely used in camera-based games requiring high performance.

A Study on the Camera Calibration Algorithm using Perspective Ratio of Difference Line Widths

  • Jeong, Jun-Ik;Song, Suck-Woo;Lee, Ho-Soon;Rho, Do-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.1-63
    • /
    • 2001
  • At 3-D vision measuring, the camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. One is that establishes reference points in space, and the other is that uses the grid type frame and statistical method. But, the former has difficult to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. The advantage of this algorithm is that it can estimate position, pose and distance between camera and object ...

  • PDF

A New Hand-eye Calibration Technique to Compensate for the Lens Distortion Effect (렌즈왜곡효과를 보상하는 새로운 hand-eye 보정기법)

  • Chung, Hoi-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.172-179
    • /
    • 2002
  • In a robot/vision system, the vision sensor, typically a CCD array sensor, is mounted on the robot hand. The problem of determining the relationship between the camera frame and the robot hand frame is refered to as the hand-eye calibration. In the literature, various methods have been suggested to calibrate camera and for sensor registration. Recently, one-step approach which combines camera calibration and sensor registration is suggested by Horaud & Dornaika. In this approach, camera extrinsic parameters are not need to be determined at all configurations of robot. In this paper, by modifying the camera model and including the lens distortion effect in the perspective transformation matrix, a new one-step approach is proposed in the hand-eye calibration.