• Title/Summary/Keyword: Fragility Curves

Search Result 251, Processing Time 0.023 seconds

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

The effect of structural variability and local site conditions on building fragility functions

  • Sisi, Aida Azari;Erberik, Murat A.;Askan, Aysegul
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-295
    • /
    • 2018
  • In this study, the effect of local site conditions (site class and site amplifications) and structural variability are investigated on fragility functions of typical building structures. The study area is chosen as Eastern Turkey. The fragility functions are developed using site-specific uniform hazard spectrum (UHS). The site-specific UHS is obtained based on simulated ground motions. The implementation of ground motion simulation into seismic hazard assessment has the advantage of investigating detailed local site effects. The typical residential buildings in Erzincan are represented by equivalent single degree of freedom systems (ESDOFs). Predictive equations are accomplished for structural seismic demands of ESDOFs to derive fragility functions in a straightforward manner. To study the sensitivity of fragility curves to site class, two sites on soft and stiff soil are taken into account. Two alternative site amplification functions known as generic and theoretical site amplifications are examined for these two sites. The reinforced concrete frames located on soft soil display larger fragilities than those on stiff soil. Theoretical site amplification mostly leads to larger fragilities than generic site amplification more evidently for reinforced concrete buildings. Additionally, structural variability of ESDOFs is generally observed to increase the fragility especially for rigid structural models.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Earthquake Fragility Analysis of a Buried Gas Pipeline (매설가스배관의 지진 취약도 해석)

  • Lee, Do-Hyung;Jeon, Jeong-Moon;Oh, Jang-Kyun;Lee, Du-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.65-76
    • /
    • 2010
  • In this paper, earthquake fragility analysis has been comparatively performed with regard to a buried gas pipeline of API X65 which has been widely used in Korea. For this purpose, a nonlinear time-history analyses has been carried out for 15 different analytical models of a buried gas pipeline in terms of the selected 12 sets of earthquake ground motions with 0.1g of scaling interval. Following that, earthquake fragility analyses have been conducted using the maximum axial strain of the pipeline obtained from the nonlinear time-history analyses. Parameters under consideration for subsequent earthquake fragility analyses are soil conditions, end-restraint conditions, burial depth and the type of pipeline. Comparative analyses reveal that whereas the first three parameters influence the fragility curves, particularly soil conditions amongst the three parameters, the last parameter has a little effect on the curves. In all, the present study can be considered as a benchmark fragility analysis of a buried gas pipeline in the absence of an earthquake fragility analysis of the pipeline and thus is expected to be a useful source regarding earthquake fragility analyses of a buried gas pipelines.

Comparison of the seismic performance of Reinforced Concrete-Steel (RCS) frames with steel and reinforced concrete moment frames in low, mid, and high-rise structures

  • Jalal Ghezeljeh;Seyed Rasoul Mirghaderi;Sina Kavei
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.249-263
    • /
    • 2024
  • This article presents a comparative analysis of seismic behavior in steel-beam reinforced concrete column (RCS) frames versus steel and reinforced concrete frames. The study evaluates the seismic response and collapse behavior of RCS frames of varying heights through nonlinear modeling. RCS, steel, and reinforced concrete special moment frames are considered in three height categories: 5, 10, and 20 stories. Two-dimensional frames are extracted from the three-dimensional structures, and nonlinear static analyses are conducted in the OpenSEES software to evaluate seismic response in post-yield regions. Incremental dynamic analysis is then performed on models, and collapse conditions are compared using fragility curves. Research findings indicate that the seismic intensity index in steel frames is 1.35 times greater than in RCS frames and 1.14 times greater than in reinforced concrete frames. As the number of stories increases, RCS frames exhibit more favorable collapse behavior compared to reinforced concrete frames. RCS frames demonstrate stable behavior and maintain capacity at high displacement levels, with uniform drift curves and lower damage levels compared to steel and reinforced concrete frames. Steel frames show superior strength and ductility, particularly in taller structures. RCS frames outperform reinforced concrete frames, displaying improved collapse behavior and higher capacity. Incremental Dynamic Analysis results confirm satisfactory collapse capacity for RCS frames. Steel frames collapse at higher intensity levels but perform better overall. RCS frames have a higher collapse capacity than reinforced concrete frames. Fragility curves show a lower likelihood of collapse for steel structures, while RCS frames perform better with an increase in the number of stories.

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient (마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석)

  • Moon, Ji-Hoon;Kim, Ji-Su;Lee, Tae-Hyung;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

Seismic Fragility Analysis of Lightning Arrester Considering Various Damage States (다양한 손상상태를 반영한 피뢰기 설비의 지진취약도 해석)

  • Shin, Yooseong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The seismic evaluation of electric power facilities in the switchyard of nuclear power plants is currently insufficient. In order to evaluate the seismic performance of lightning arrester subjected to four types of earthquake (near- and far-fault earthquakes, NEHRP Site Class A&B and D earthquakes), seismic fragility analysis using maximum likelihood estimation is performed considering various damage states. The comparison of the seismic fragility curves for three main parts of lightning arrester that are the busing, anchor and steel frame, reveals that the failure of lightning arrester is governed by the bushing damage mode such as porcelain cracking.

Seismic fragility evaluation of piping system installed in critical structures

  • Ju, Bu Seog;Jung, Woo Young;Ryu, Yong Hee
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.337-352
    • /
    • 2013
  • Seismic performance of critical facilities has been focused on the structural components over the past decade. However, most earthquake damages were observed to the nonstructural components during and after the earthquakes. The primary objective of this research was to develop the seismic fragility of the piping system incorporating the nonlinear Tee-joint finite element model in the full scale piping configuration installed in critical facilities. The procedure for evaluating fragility curves corresponding to the first damage state was considered the effects of the top floor acceleration sensitivities for 5, 10, 15, and 20 story linear RC and steel building systems subjected to 22 selected ground motions as a function of ground motion uncertainties. The result of this study revealed that the conditional probability of failure of the piping system on the top floor in critical facilities did not increase with increased level of story height and in fact, story level in buildings can tune the fragilities between the building and the piping system.

Seismic performance of skewed highway bridges using analytical fragility function methodology

  • Bayat, M.;Daneshjoo, F.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.723-740
    • /
    • 2015
  • In this study, the seismic performance of skewed highway bridges has been assessed by using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare complete information about the different damage states of a 30 degree skewed highway bridge. A three dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has been applied. The details of the full nonlinear procedures have also been presented. Different spectral intensity measures are studied and the effects of the period on the fragility curves are shown in different figures. The efficiency, practicality and proficiency of these different spectral intensity measures are compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis. It has been shown that, considering different intensity measures (IM) leads us to overestimate or low estimate the damage probability which has been discussed completely.

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.