• Title/Summary/Keyword: Fracture tube

Search Result 207, Processing Time 0.023 seconds

Analyses of Fracture Tube Tearing using Gurson Model and Shear Failure Model (Gurson Model과 Shear Failure Model을 이용한 파쇄튜브의 찢어짐 해석)

  • Yang, Seung-Yong;Kwon, Tae-Su;Choi, Won-Mok
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • Two kinds of failure model, that is, the Gurson model and a shear failure model were used for the finite element analyses of simple and notch tensile specimens and axial compression of a fracture tube with initial saw-cuts. The parameter values for the shear failure model were determined by a combined experimental and numerical analysis of the notch tensile specimens. After fitting the numerical parameters such as the yielding stress and the fracture shear strains, the Gurson model and the shear failure model were applied to the analysis of the fracture tube. Although the Gurson model and the shear failure model showed similar fracture behavior for the case of the tensile specimens, the respective results were different in the axial force and the crack growth rate of the fracture tube. That is, the shear failure model required more axial force to make the cracks propagate along the tube than the Gurson model. These are believed to show the lack of damage evolution process of the shear failure model. To decide which model is better in the tube analysis, experimental verification will be necessary.

Prediction for Forming Limit of Tube Warm Hydroforming Based on the Ductile Fracture Criteria (연성파괴 이론을 적용한 튜브 온간액압성형의 성형한계 예측)

  • Yi, H.K.;Moon, Y.H.;Lee, J.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • Hydroformability and fracture criteria of FE analysis based on ductile fracture were investigated in warm hydroforming of A16061 tube. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed at room temperature and $200^{\circ}C$. The measured flow stresses were used as input parameters for FE analysis. The damage values were calculated by FE analysis based on ductile fracture criteria at maximum radius of free bulged tubes. Damage values were compared of hexagonal shaped hydroformed parts. As a result, the formability by critical damage value for extruded tube is lower than that of full annealed tube up to 0.5.

Fracture Behavior of Plate Shape Ceramic using Compressive Shock Wave (압축 충격파를 이용한 평판형상 세라믹의 파괴거동)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Song, Kee-Hyuck;Yoon, Soo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.103-106
    • /
    • 2009
  • Fracture characteristics of plate shape using shock tube for glass filled ceramics was carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role separating solid and liquid fuel, and needs the frangible characteristics that the fracture of a part should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube are observed. The experimental apparatus of shock tube consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens are used 3, 4.5 and 6mm thickness. Also diameters of shock wave area are chosen 70, 60 and 50 mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

  • PDF

Fracture Toughness Embrittlement by Hydride in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 수화물에 의한 파괴인성 취화에 관한 연구)

  • Oh, Dong-Joan;Ahn, Sang-Bok;Park, Soon-Sam;An, Chang-Yun;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.93-98
    • /
    • 2000
  • Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of fracture toughness by hydride embrittlement in CANDU pressure tube which can result from the absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness test were performed from room temperature to $300^{\circ}C$ using three different specimens which have an AR (As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test temperature became higher they were decreased linearly. While, at room temperature, the hydrogenbsorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture toughness, the fracture characteristics became ductile such as AR specimen at high temperatures. Through the observation of fracture surface using SEM, it was found that the stress state of mixed mode could be related to the fissure which was believed to decrease the global fracture toughness.

  • PDF

A Study on Fracture Characteristic of Ceramic Dome Using Shock Tube (충격파관을 이용한 세라믹 돔의 파괴 특성에 관한 연구)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Kwon, Sun-Guk;Song, Kee-Hyuck;Yoon, Su-Jin;Lee, Gi-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1274-1278
    • /
    • 2009
  • Fracture characteristics for plate and dome shapes of glass filled ceramics using shock tube were carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role as separated membrane between combustion and external air, and needs the frangible characteristics that the particles of fractured glass filled ceramics should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube compare with analytical method. The experimental apparatus consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens have the thickness of 3, 4.5 and 6mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

Cause of and Solution for Damage to STS310S Tube in Heat Exchange Devices (열교환기 STS310S 튜브의 손상 원인 및 대책)

  • Kim, Jin Wook;Kim, Seon Hwa;Jeong, Jin Hyuk;Kim, Young Soo;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.187-193
    • /
    • 2015
  • The STS310S tube has excellent heat transfer ability and is widely used as the material for heat transfer tubes in heat exchange devices. Mixtures of gas and water flow inside the tube whereas hot flame flows outside it. In this environment, the material of the tube may undergo embrittlement, which can cause leakage. Cracks can propagate from the inside of the tube to its outside and result in brittle fracture. This study identified the cause of brittle fracture in the STS310S tube through experiments and discussion, and proposed solutions to prevent fracture.

Failure Probability Evaluation of Pressure Tube using the Probabilistic Fracture Mechanics (확률론적 파괴역학 기법을 이용한 압력관의 파손확률 평가)

  • Son, Jong-Dong;Oh, Dong-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • In order to evaluate the integrity of Zr-2.5Nb pressure tubes, probabilistic fracture mechanics(PFM) approach was employed. Failure assessment diagram(FAD), plastic collapses, and critical crack lengths(CCL) were used for evaluating the failure probability as failure criteria. The Kr-FAD as failure assessment diagram was used because fracture of pressure tubes occurred in brittle manner due to hydrogen embrittlement of material by deuterium fluence. The probabilistic integrity evaluation observed AECL procedures and used fracture toughness parameters of EPRI and recently announced theory. In conclusion, the probabilistic approach using the Kr-FAD made it possible to determine major failure criterion in the pressure tube integrity evaluation.

Finite Element Analysis for Wall Thinned Steam Generator Tubes (감육된 증기발생기 전열관의 유한요소 해석)

  • Seong, K.Y.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2006
  • Failure assessment of steam generator tube are very important for the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS on steam generator tube with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

  • PDF

Analysis of Forming Limit in Tube Hydroforming (튜브하이드로포밍 공정에서의 성형한계 해석)

  • 김영삼
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.134-140
    • /
    • 2000
  • Tube hydroforming is a relatively new technology compared to conventional stamping. thus there is little knowledge base that can be utilized for process and die design. To remedy this situation considerable research is now being conducted by many researchers on significant aspects of tube hydroforming technology including material selection pre-form design hydroforking process and tool design. in the tube hydroforming process we frequently experence many failure modes like wrinkling. buckling folding back and fracture under the improper forming conditions. In this paper forming limit for failure occurrence such as fracture and wrinkling is examined theoretically and the result is compared with Back's experimental result.

  • PDF

The Failure Analysis of Boiler Tube for High Temperature and High Pressure Service (고온고압용 보일러 튜브의 파손 원인분석)

  • Lee, Jong-Hun;Yu, Wi-Do
    • 연구논문집
    • /
    • s.30
    • /
    • pp.121-128
    • /
    • 2000
  • The failed tube received for this study has been used for approximately 10 year at $330^{\circ}C$ in a steam production boiler tube was fractured in the transversed direction to tube length, and fracture mode was typically intergranulas type without the plastic deformation. The fracture surface was covered by the oxide scale formed from the intermal high pressure steam at high temperature. The microstructure was not nearly thermal-degraded during the service. From this result, we can conclude that the oxide film was proferentialy formed into the grainboundary and this grainboundary oxide film was brittle-fractured by the thermal stress in the longitudinal direction to the tube brittle intergranular fracture mode.

  • PDF