• Title/Summary/Keyword: Fracture stress

Search Result 2,430, Processing Time 0.033 seconds

Determination of ductile fracture parameters by notched specimen test (노치시편을 이용한 연성파괴이론 상수 결정)

  • Kim, S.W.;Kwon, Y.C.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • In the last few years, ductile fracture criteria based on various hypotheses have been developed and utilized with FEM to predict forming failure. The accurate deformation analysis by the FEM and the decision of damage parameters are the most important factors in these approaches. In this paper, several conventional integral forms of fracture criteria were introduced and the test method to determine damage parameters by using notched specimen was suggested. Based on the results, damage parameters obtained under the different stress system (tensile and compression) are compared and analyzed.

  • PDF

Fracture Probability Properties of Torsion Fatigue of STS304 Steel (STS304강의 비틀림 피로파괴 확률특성)

  • Park, Dae-Hyun;Jeong, Soon-Ug
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.201-206
    • /
    • 2003
  • This study is test for STS304 specimen using bending and torsion state. Rounded specimen and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed If summarize STS304 torsion result of fatigue test, is as following. Fatigue life prediction was available by Weibull statistics distribution, and 50% breakdown probability correlation equation was appeared as following.

  • PDF

High-Yield Etching-Free Transfer of Graphene: A Fracture Mechanics Approach

  • Yoon, Taeshik;Jo, Woo Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • Transfer is the critical issue of producing high-quality and scalable graphene electronic devices. However, conventional transfer processes require the removal of an underlying metal layer by wet etching process, which induces significant economic and environmental problems. We propose the etching-free mechanical releasing of graphene using polymer adhesives. A fracture mechanics approach was introduced to understand the releasing mechanism and ensure highyield process. It is shown that the thickness of adhesive and target substrate affect the transferability of graphene. Based on experimental and fracture mechanics simulation results, we further observed that compliant adhesives can reduce the adhesive stress during the transfer, which also enhances the success probability of graphene transfer.

Model of Least Square Support Vector Machine (LSSVM) for Prediction of Fracture Parameters of Concrete

  • Kulkrni, Kallyan S.;Kim, Doo-Kie;Sekar, S.K.;Samui, Pijush
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • This article employs Least Square Support Vector Machine (LSSVM) for determination of fracture parameters of concrete: critical stress intensity factor ($K_{Ic}^s$) and the critical crack tip opening displacement ($CTOD_c$). LSSVM that is firmly based on the theory of statistical learning theory uses regression technique. The results are compared with a widely used Artificial Neural Network (ANN) Models of LSSVM have been developed for prediction of $K_{Ic}^s$ and $CTOD_c$, and then a sensitivity analysis has been performed to investigate the importance of the input parameters. Equations have been also developed for determination of $K_{Ic}^s$ and $CTOD_c$. The developed LSSVM also gives error bar. The results show that the developed model of LSSVM is very predictable in order to determine fracture parameters of concrete.

Constraint Loss Assessment of SA508 PCVN Specimen according to Crack depth (SA508 PCVN 시편의 균열깊이에 따른 구속력 손실 평가)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • In general structures, cleavage fracture may develop under the low constraint condition of larger scale yielding with a shallow surface crack. However, standard procedures for fracture toughness testing require very severe restrictions of specimen geometry. So the standard fracture toughness data makes the integrity assessment irrationally conservative. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with varying crack depth, The constraint effects on the crack depth ratios are quantitatively evaluated by scaling model and Weibull stress method using 3-D finite clement method, After correction of constraint loss due to shallow crack depths, the statistical size effect are also corrected according to the standard ASTM E 1921 procedure, The results snowed a good agreement in the geometry correction regardless of the crack size, while some over-corrections were observed in the corrected values of $T_0$.

  • PDF

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Fracture Probability Properties of Pure and Cantilever Bending Fatigue of STS304 Steel (STS304강의 순수 및 외팔보형 굽힘 피로에 대한 파괴확률 특성)

  • Roh, Sung-Kuk;Park, Dae-Hyun;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.199-204
    • /
    • 2001
  • Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frenquently. Therefore many people are suffering harm of property. The destruction cause of macaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded specimen and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed.

  • PDF

Ductile Fracture in Axisymmetric Extrusion Process (축대칭 전방 압출 공정에서의 연성파괴)

  • 최석우;이용신;오흥국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.29-37
    • /
    • 1996
  • A ductile fracture criterion, which has already proposed, namely, ($\Delta$1/1o)f at $\Delta$$\sigma$ m=(($\Delta$1/1o)f+(-1/tan$\theta$)$\Delta$$\sigma$m(where ($\Delta$1/1o)f is fracture elongation, $\Delta$$\sigma$m is mean stress variation) was made use of to study the working limit in axisymmetric extrusion. The present investigation is concerned with the application of theory on flow and fracture to the prediction of workability of materials in axisymmetric bar extrusion, with special reference to central bursting. The influenced of die geometry and manufacturing conditions on the central bursting are predicted.

  • PDF

Joint Design of Steel-Aluminum Power Steering Cylinder by using FE Analysis with Cohesive Zone Model (Cohesive Zone Model을 이용한 동력조향 유압실린더의 스틸-알루미늄 접착부 설계)

  • Lee, C.J.;Lee, S.K.;Ko, D.C.;Schafer, H.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.385-391
    • /
    • 2009
  • An adhesively bonded power steering cylinder with a steel tube and an aluminum bracket was developed to reduce the weight of steering systems. To achieve the joint strength between the steel tube and of the aluminum bracket, the shape aluminum bracket re-designed by using the FE-analysis. Fracture behavior of the adhesive layer was considered by a cohesive zone model(CZM), which is based on the two-parameter fracture phenomenon with critical stress and fracture toughness. From the result of FE-analysis with CZM, re-designed power steering cylinder satisfied the desired joint strength for axial and torsion modes. And its joint strength was verified by the fracture test in each mode.

A Study on Prediction of Fatigue Life and Shock Fracture for the Engine Base of Auxiliary Power Unit for Tracked Vehicle (보조동력장치 엔진 Base의 피로수명 예측 및 충격파손에 관한 연구)

  • Lee, Sang-Bum;Chung, Kyung-Taek;Shin, Jae-Ho;Jang, Hwan-Young;Suh, Jeong-Se
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.86-92
    • /
    • 2008
  • This paper is to investigate the behavior of linear static structure stress, the fatigue and experimental shock fracture far engine base in the Auxiliary Power Unit to resolve its restricted electrical power problem. The shock fracture test was experimentally made under MIL standard criteria. The numerical results by finite element method had a good agreement with those from the shock test. The design data of predicting the fracture at the initial crack and the damage behavior of structure with shock and vibration load in the battle field can be obtained from shock test. In the functional shock test, the crack at the side parts of the engine base was found at peak acceleration of 40g.