• Title/Summary/Keyword: Fracture stress

Search Result 2,425, Processing Time 0.033 seconds

Insufficiency fracture after radiation therapy

  • Oh, Dongryul;Huh, Seung Jae
    • Radiation Oncology Journal
    • /
    • v.32 no.4
    • /
    • pp.213-220
    • /
    • 2014
  • Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

Fatigue Behavior of Alumina Ceramics under the Repeated Dynamic Loading (반복 동적하중에 의한 알루미나 세라믹스의 피로거동)

  • 이규형;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.850-856
    • /
    • 1998
  • The dynaamic fatigue behavior of alumina ceramics was observed at room temperature using four-point bending method. Dynamic fatigue fracture strength was observed as function of down speed and notch length. The crack growth exponent of the specimens was calculated from the fracture strength and lifetime in dynamic fatigue test. After loading the stresses in the range of 0% to 105% compared with the average in-ert strength the value of residual fracture strength was measured for unnotched and 0.5mm notched speci-mens at the 0.001 and 0.0005 mm/min down speed respectively. After the 95% stress of the average inert strength was applied repeatedly the value of rsidual fracture strength was measured for 0.5mm notched specimens at the 0.001 and 0.0005 mm/min down speed respectively. The material constant A was found to be almost the same and not to depend on the loading mode or the down speed for unnotched and notched specimen. The value of fracture strength with time calculated from the constants n and A was in good agreement with the measured value.

  • PDF

Fracture analysis for nozzle cracks in nuclear reactor pressure vessel using FCPAS

  • Abdurrezzak Boz;Oguzhan Demir
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2292-2306
    • /
    • 2024
  • This study addresses cracks and fracture problems in engineering structures that may cause significant challenges and safety concerns, with a focus on pressure vessels in nuclear power plants. Comprehensive parametric three-dimensional mixed mode fracture analyses for inclined and deflected nozzle corner cracks with various crack shape aspect ratios and depth ratios in nuclear reactor pressure vessels are carried out. Stress intensity factor (SIF) solutions are obtained using FRAC3D, which is part of Fracture and Crack Propagation Analysis System (FCPAS), employing enriched finite elements along the crack front. Also, improved empirical equations are developed to allow the determination of mixed mode SIFs, KI, KII, and KIII, for any values of the parameters considered in the study. This study provides practical solutions to assess the remaining life and fail-safe conditions of nuclear reactors by providing accurate SIF determination.

Size-effect of fracture parameters for crack propagation in concrete: a comparative study

  • Kumar, Shailendra;Barai, S.V.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.

The Study for Fracture in the First Stage Blade of Aircraft Engine (항공기엔진용 1단계 터빈블레이드에 대한 파손 연구)

  • Yoon, Youngwoung;Park, Hyoungkyu;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.806-813
    • /
    • 2018
  • The fracture of a turbine blade of aerospace engine is presented. Although there are a lot of causes and failure modes in blades, the main failure modes are two ways that fracture and fatigue. Degradation of blade material affects most failure modes. Total propagation of failure in this study specifies failure of fracture type. Some section appears fatigue mode. Especially since this study describes analysis of failure for blade in high temperature, it can be a case in point. Analysed blade is Ni super alloy. Investigations of blade are visual inspection, material, microstructure, high temperature stress rupture creep test, analysis and fracture surface, etc. The root cause for fracture was stress rupture due to abnormal thermal environment. Thermal property of Ni super alloy is excellent but if each chemical composition of alloys are different due to change mechanical properties, selection of material is very important.

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

Refracture of Proximal 5th Metatarsal Stress Fracture in Athletes Treated Operatively (운동 선수군의 제 5중족골 피로골절의 수술적 치료 후 발생한 재골절)

  • Lee, Kyung-Tai;Young, Ki-Won;Kim, Jae-Young;Bang, Yu-Sun;Lee, Sang-Joon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.1
    • /
    • pp.95-100
    • /
    • 2003
  • Purpose: To evaluate the incidence, contributing factors, and clinical results of refracture of proximal 5th metatarsal stress fracture treated operatively in athletes Materials and Methods: This study included 8 patients who had been treated for refracture of proximal 5th metatarsal stress fracture with operaton. Their charts & radiologic findings were evaluated retrospectively. Results: The overall incidence of refracture was 13%. Main contributing factors were time of return to sports activity and associated deformities such as cavus foot or flat foot. Seven cases were managed with nonoperative treatment, and we added percutaneous pin fixation under local anesthesia in one case. Bony union was seen at average 8. 5 weeks in 7 cases except 1 nonunion and all of 8 patient returned to athletics at average 16 weeks. Conclusion: The incidence of refracture of proximal 5th metatarsal stress fracture treated operatively in athletes was relatively high. Time of rerum to sports activity must be decided very carefully on individual situation and further imaging study may be helpful for bony union evaluation. The non-operative treatment may have a good result if bone graft was done initially.

  • PDF

A PHOTOELASTIC STUDY ON EFFECTS OF BONE REDUCTION FORCEPS ON MANDIBULAR FRACTURE REDUCTION (골절정복겸자가 하악골 골절정복에 미치는 효과에 관한 광탄성 연구)

  • Park, Jin-Hyoung;Choi, Byung-Ho;Yoo, Tae-Min;Huh, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.464-471
    • /
    • 2002
  • The purpose of this study was to evaluate the stress patterns within fractured mandibles generated by reduction forceps and to determine the optimal position of the reduction forcep. Twenty-seven mandibular models were fabricated using a photoelastic resin. Each of the three sets of mandible models prepared was osteotomized according to one of three different fracture types(symphysis, parasymphysis and body fractures). After reducing the cut segments, a reduction forcep was placed into different engagement holes to compress the segments. Photoelastic stress analysis was used to visualize the stress patterns within the fractured mandiblular models generated by the reduction forcep. In the case of symphysis or parasymphysis fractures, an optimum distribution of stress over the fracture site was achieved when placing the reduction forcep more than 12.5mm on either side of the fracture line between the midway level bisecting the mandible and 5mm below the level. In the case of body fractures, optimum stress distribution was achieved when the reduction forcep was placed more than 15mm from the fracture line on the midway level. In conclusion, a correct use of reduction forceps helps to provide a precise threedimensional reduction for mandibular fractures.