• Title/Summary/Keyword: Fracture shape

Search Result 595, Processing Time 0.024 seconds

Microstructure and Mechanical Properties of Reaction-Bonded Sintering TiC-Based Composite Prepared by Ni-Ti Metal Infiltration (Ni/Ti 금속침투에 의한 반응결합소결 TiC계 복합체의 미세구조 및 기계적 특성)

  • 한인섭;우상국;김홍수;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.995-1002
    • /
    • 1996
  • The TiC-(Ni/Ti) composites were prepared by reaction bonding between TiC preforms and the melted mixture of Ni/Ti metal the atomic ratio of which were the ranges of 0.3 to 3. And their microstructures phase composi-tions and mechanical properties were investigated. During reaction bonding Ni/Ti metal mixture had a good wettability an permeability with TiC preforms and pore-free and fully dense sintered bodies were fabricated. TiC particle shape changed from spherical to angular platelet-like and grain size was grown with Ni/Ti atomic ratio increasing from 0.3 to 1. whereas grain growth of TiC particle was restrained and its shape changed gain from angular platelet-like to spherical when Ni/Ti atomic ratio was more than 2. Maximum bending strength and fracture toughness were obtained at the Ni/Ti atomic ratio being 1 their values were 582 MPa and 11.1 MPa.m1/2 respectively.

  • PDF

Acoustic emission during fatigue crack penetration behavior of surface cracked plate (표면균열재의 피로균열 관통거동에 따른 어코스틱에미션)

  • 남기우;김선진;오세규;이건찬;오정환;이주석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.29-38
    • /
    • 1997
  • Crack penetration behavior by fatigue crack propagation and measurements of AE before-and-after crack penetration were examined using SS41 steel plate. Experimental crack shape of SU type was in good agreement with calculated shape rather than S type. Crack propagation behavior on the front surface appears not to change markedly after penetration. However, crack growth on the back surface appears to accelerate as reported by author. As a crack propagates, AE occurred heavily just before penetration. Then, it decreases and crack is penetrating. A transition from plane strain to plane stress was observed by fractographic study. At this time, separation of fracture surface was shown which affects AE occurrence.

  • PDF

New Approaches to Flaw Classification and Sizing for Quantitative Ultrasonic Testing (정량적 초음파 시험을 위한 결함분류와 크기산정의 새로운 기법)

  • 송성진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.3-16
    • /
    • 1997
  • In modern high performance engineering applications, the structural integrity of materials and structures are quite often evaluated using fracture mechanics. This evaluation in turn requires information on the flaw geometry (location, type, shape, size, and orientation). The ultrasonic nondestructive evaluation (NDE) method is one technique that is commonly used to provide such information. Flaw classification (determination of the flaw type ) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues for quantitative ultrasonic NDE. In this paper new approaches to both classification and sizing of flaws are described together with extensive review of previous works on both topics. In the area of flaw classification, a methodology is developed which can solve classification problems using probabilistic neural networks, and in the area of flaw sizing, a time-of-flight equivalent (TOFE) sizing method is presented. The techniques proposed here are in a form that can be used directly in many practical applications to quantitative estimates of the flaw's significance.

  • PDF

Grain Size Refinement in CuAlNi Shape Memory Alloy using Melt-spun Ribbon (급냉응고된 Ribbon을 이용한 CuAINi 형상기억합금의 결정미세화)

  • Choe, Yeong-Taek
    • 연구논문집
    • /
    • s.22
    • /
    • pp.127-139
    • /
    • 1992
  • The mechnial properties such as fracture strength, ductility and fatigue strength of Cu shape memory alloy are lower than those of Ti-Ni SMA, because of their high elastic anisotropy and large grain size. And in order to improve the mechanical property of Cu SMA, some techniques such as casting method by addition of refining element, powder metallurgy and rapid solidification process have been studied on the refinement of the grain size of Cu SMA. This study was carried out to refine the grain size of CuAlNi SMA by applying the melt spinning method. According to this study, the conclusions are as follows; - grain size of the melt-spun ribbon was about $1\mum$ - there was not change in grain size, although increasing of hot pressing temperature -grain size of the hot-extruded specimen was about $30-40\mum$, it is more refiner than that of castings

  • PDF

Structural Performance Test according to Initial shape design of PF-BRB (조립식 좌굴방지가새형 이력댐퍼의 초기형상설계에 따른 구조성능실험)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, a prefabricated buckling brace (PF-BRB) was proposed, and a test specimen was manufactured based on the design formula for the initial shape and structural performance tests were performed. As a result of the experiment, all standard performance requirements presented by KDS 41 17 00 and MOE 2021 were satisfied before and after replacement of the reinforcement module, and no fracture of the joint module occurred. As a result of the incremental load test, the physical properties showed a significant difference in the stiffness ratio after yielding under the compressive load of the envelope according to the experimental results. It is judged necessary to further analyze the physical properties according to the experimental results through finite element analysis in the future.

Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box (회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지)

  • Pham, Chuyen;Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.374-384
    • /
    • 2021
  • In this study, we propose a new approach for automatic fracture detection in CT scan images of rock specimens. This approach is built on top of two-stage object detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The use of rotated bounding box plays a key role in the future work to overcome several inherent difficulties of fracture segmentation relating to the heterogeneity of uninterested background (i.e., minerals) and the variation in size and shape of fracture. Comparing to the commonly used bounding box (i.e., axis-align bounding box), rotated bounding box shows a greater adaptability to fit with the elongated shape of fracture, such that minimizing the ratio of background within the bounding box. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. To validate the applicability of the proposed approach, we train and test our approach with a number of CT image sets of fractured granite specimens with highly heterogeneous background and other rocks such as sandstone and shale. The result demonstrates that our approach can lead to the encouraging results on fracture detection with the mean average precision (mAP) up to 0.89 and also outperform the conventional approach in terms of background-to-object ratio within the bounding box.

Preparation and Analysis of the Deployment Behavior of Shape Memory Polymer Composite Antennas (형상기억고분자 복합재료 안테나의 제조 및 전개 거동 분석)

  • An, Yongsan;Kim, Jinsu;Goo, Nam Seo;Park, Miseon;Kim, Yeontae;Park, Jong Kyoo;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.347-354
    • /
    • 2018
  • Shape memory polymer composites have been studied for deployable antennas in space because they have advantages of lightweight, large deformability, good processability, and low cost. In this research, shape memory polymer composites (SMPCs) were manufactured using carbon nanotubes (CNTs) as reinforcements and were used to fabricate SMPC antenna. The SMPCs were prepared by dispersing CNTs in the polymer matrix. Various dispersion methods were investigated to determine the most suitable one, focusing on the mechanical properties of SMPCs including their fracture behavior. The shape memory properties of SMPCs were measured and finally, the deployment behavior of the SMPC antenna was analyzed.

Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique (AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Ku, Hoo-Taek;Park, Dong-Sung;Lee, Kyu-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

Evaluation of Delamination Behavior in Hybrid Composite Using the Crack Length and the Delamination Width (균열길이와 층간분리 폭의 관계를 이용한 하이브리드 복합재의 층간분리 거동 평가)

  • 송삼홍;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of glass fiber/epoxy laminates using the traditional fracture mechanism, their researches were not sufficient to do it: the damage zone of glass fiber/epoxy laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of glass fiber/epoxy laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length and delamination width in hybrid composite material such as Al/GFRP laminate. The details of investigation were as follows : 1) Relationship between crack length and delamination width, 2) Relationship between delamination aspect ratio and delamination area rate, 3) Variation of delamination growth rate is attendant on delamination shape factors. The test results indicated that the delamination growth rate depends on delamination width delamination aspect ratio and delamination shape factors.

The Effects of Welding Clearance and bending moment on Spot Weldability (점용접 간극과 굽힘 모멘트가 용접성에 미치는 영향)

  • Lim, Jae-Kyoo;Song, Jun-Hee;Kuk, Jung-Ha;Yang, Seung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • The automobile is made up of thousands of parts. Some parts are formed by pressing and combined by spot welding. To find weldability conditions of spot welding, clearance between two welding plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a steel plate of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two specimens was changed 0mm, 3mm and 5mm and distance from vise to measure influence of bending moment 25mm, 45mm, 65mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear. The much bending moment and crosshead speed are the much tensile shear load is.

  • PDF