• Title/Summary/Keyword: Fracture shape

Search Result 595, Processing Time 0.022 seconds

A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing (골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2007
  • This paper aims to enhance the efficiency of bone fracture healing with bone plate made of fiber reinforced composite materials. The composite bone plate was designed as the same dimension and shape as the existing stainless steel bone plate. To find out the appropriate stacking sequence of the composite bone plate the variations of strain distributions were calculated using FE analysis when the bone plates were applied to the fracture site. From the analysis result it was found that the composite bone plate whose Young's modulus is lower than that of metal bone plate gave more uniform strain distribution and provided appropriate condition for callus formation and its development.

Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet (400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계)

  • Park, K.D.;Jang, J.H.;Kim, S.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF

Formability Test of Boron Steel Sheet at Elevated Temperature for Hot Stamping (핫스탬핑용 보론강의 고온 성형한계선도 평가 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • The hot stamping process is an innovative forming method that could prevent the cracking of high strength steel sheets. The formability test of boron steel sheet using forming limit diagrams at elevated temperature is very complicated and time consuming job. In this paper, an alternative test method to evaluate the formability of boron steel in hot stamping has proposed. It measured the FLD0 instead of whole strain combinations of FLD with the tensile test machine and specially designed test rig. Test results shows that the proposed test method can simulate the plain strain condition fracture and can make the FLD of boron steel sheet at elevated temperature with less effort.

Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests (Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석)

  • 김국주;박종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF

Fabrication and Properties of Self-diagnosis GFRP for Low Loading (저하중용 자기진단 GFRP의 제조와 특성)

  • Shin, Soon-Gi;Lim, Hyun-Ju;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.732-736
    • /
    • 2003
  • A CP-GFRP(Carbon Powder-Glass Fiber Reinforced Plastic) sensor was fabricated for fracture detection. The electric resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance of the sensor was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CP-GFRP, because inner crack was propagated, the part of percolation structures was disconnected. These observations show the following results. The conduction of CP-GFRP sensor is due to percolation structure of carbon powders and increase of resistance is due to expansion of cracks.

Development of Precise Shearing Mechanism on Thin Sheet for Laser Welding (Analysis of Precise Shearing Process using FEM (레이저 용접을 위한 박판재의 정밀 전단 메카니즘 개발 (유한요소법을 이용한 정밀 전단 공정해석))

  • 표창률;전병희;조명래
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 1999
  • Recently, Tailor Welded Blank (TWB) is widely used in automotive industry since the transformation characteristic of its material can be changed. However, clearance between welding surfaces becomes the important factor which affect the quality of the laser weld, causing difficulties in preparing the sheet. The objective of this paper is to systematically evaluate the effects of previously presented fracture criterion and shearing condition on precise mechanical shearing simulation result. For this purpose, a parametric study was peformed to investigate the effect of finite element size and fracture criterion on simulation result. Also, in order to predict the optimum shearing condition, effect of shearing conditions such as clearance and punch radius on the shear plane shape was evaluated.

  • PDF

Machining and Crack Characteristics of the Glass Cap for OELD by Powder Blasting (파우더 블라스팅에 의한 OELD용 유리캡의 가공 및 크랙 특성)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun;Seong, Enu-Je;Han, Jin-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.51-58
    • /
    • 2006
  • The old technique of sandblasting which has been used for paint of scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. Recently, this technique is applied to fabrication of the glass cap for OELD packaging. But, micro crack is generated on the blasted glass, which cause to decrease fracture strength. In this paper, we investigated the effect of blasting parameters on surface characteristics, surface shape and fracture strength of the powder blasted glass surface.

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

Models for Relative Density and Compressive Strength of Open-Cell Ceramics with Hollow Struts (공동골격을 가진 개방셀 세라믹스의 상대밀도와 압축강도 모델)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1139-1150
    • /
    • 1997
  • A model for predicting the relative density and the compressive strength of open-cell ceramics with three-dimensional network structure was proposed through the interpretation of their macrostructure and fracture mechanics. The equation predicting the relative density was derived under the assumption that the open-cell structure was a periodic array of the tetrakaidecahedron unit cell consisting of cylindrical struts containing the internal hollow with the shape of a triangular prism. The model for compressive strength of open-cell ceramics with the hollow strut was also developed by modifying conventional model which based on fracture behavior of them subjected to the compressive stress. Both the relative density and the compressive strength were expressed in terms of the ratio of the strut diameter to the length together with the ratio of the hollow size to the strut diameter. The proposed model for the relative density and the compressive strength of the alumina-zirconia composite with open-cell structure were accorded well with the experimental values, whereas Gibson-Ashby and Zhang's model did not show such a good agreement.

  • PDF

Mechanical Fracture Characteristic of Epoxy Insulation Barrier for High Voltage GIS (초고압 GIS용 에폭시 절연물 배리어 파단 특성)

  • Suh, Wang Byuck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.641-645
    • /
    • 2017
  • In this study, an epoxy insulation barrier for high voltage GIS was developed using epoxy and a filler with a Young's modulus of 11 GPa. The material was investigated using a simulation of the principal stress, displacement, and safety factors while optimizing the profile shape. The simulation showed that thelarger Young's modulus of the $Al_2O_3$ filler compared to the $SiO_2$ in the epoxy insulation can contribute to an increase in resistance to mechanical fracturing for theoptimized profile barrier in high voltage GIS. In addition, the safety factor was improved by 10%. It can be concluded that the mechanical fracturing properties of the insulation barrier can be enhanced by increasing the content of the elastic filler, $Al_2O_3$, for high voltage GIS applications.