• Title/Summary/Keyword: Fracture intensity

Search Result 699, Processing Time 0.023 seconds

The Effect of Microcurrent Stimulation on Expression of BMP-4 After Tibia Fracture in Rabbits (미세전류가 토끼 경골의 골절 후 BMP-4 발현에 미치는 영향)

  • Cho, Mi-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.196-203
    • /
    • 2010
  • This study aimed to examine the effect of microcurrent stimulation on expression of Bone Morphogenetic Protein(BMP) 4 after tibia fracture in rabbits. The twenty four adult 6 month old New Zealand white rabbits weighting 2.5~3.5 ㎏ were used. Twenty four rabbits with tibia fracture were randomly divided into control and experimental groups. Each group was divided into four subgroups, based on the duration of the experiment (3, 7, 14, 28 days). The experimental groups received microcurrent stimulation of 20~25 ${\mu}A$ intensity with surface Ag-AgCl electrode (diameter 1cm, Biopac, U.S.A.) for 24 hours a day. Cathode of the microcurrent stimulator located on the tibia directly, anode of it did on the gastrocnemius muscle. After evaluation, the test results are as follows: Comparisons of immunohistochemical observation of BMP-4 in 7 days after tibial fracture show that there was shown to be a moderate positive reaction (++) on concentric circles of Harversian system and the interstitial lamella in the control group, while there was a very strong positive reaction () on concentric circles of Harversian system and interstitial lamellain the experimental group. These results suggest that applying non-invasive constant microcurrent stimulation on fractured bone is helpful to bone healing.

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF

Study on the Characteristics of the Corrosion Fatigue Crack Propagation of Al-Alloy used for the Shipbuilding (선박용 알루미늄 합금재의 부식피로구열 진전특성에 관한 연구)

  • Im, U-Jo;Lee, Jong-Rak;Lee, Jin-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.94-100
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuilding industries such as marine structures, ship, and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics was closed up an important role in mechanical design. In this study, the 5086 Al-Alloy was tested by used of a rotary bending fatigue tester and was investigated under the environments of various specific resistance and air. The specific resistance, as a corrosion environment, was changed 15, 20, 25 and 5000$\Omega$.cm. The corrosion fatigue crack initiation sensitivity was quantitatively inspected for 5086 Al-Alloy in the various specific resistance. The experimental constants of Paris rule were examined in the various specific resistances, and the influences of load and corrosion with affect the crack growth rate were compared with. Main results obtained are as follows: (1) Number of stress cycles to corrosion fatigue crack initiation delaies and corrosion fatigue crack initiation sensitivity decreases with the increasing for the specific resistance. (2) The experimental constant m of Paris rule decreases with the decreasing for specific resistance. Hence the effect of corrosion is more susceptible than that of stress intensity factor. (3) The corrosion fatigue crack of 5086 Aluminium Alloy appears intergranular fracture. (4) Corrosion sensitivity is decreased with the increasing stress intensity factor and is nearly uniform when stress intensity factor is over 40kg.mm super(-3/2)

  • PDF

Study on corrosion fatigue of high strength steel (고장력강의 부식피로에 관한 연구)

  • 유헌일;천기정;택목양삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 1983
  • In case of $K_{Imax}$ < $K_{Iscc}$, the corrosion fatigue of high strength steel in 0.1N $H_{2}$S $O_{4}$ solution and 3.5% salt water is as follows. 1. The fatigue life shortens in order of 3.5% salt water and 0.1N $H_{2}$S $o_{4}$ solution. 2. The fatigue crack growth rate in air is obtained as the following equation. (dc/dN)$_{atr}$=7.23*10$^{-6}$ (.DELTA. K)$^{2.23}$ 3. The corrosion fatigue crack growth rate in environment is divided into three regions, that is, First Region, Second Region and Third Region from the small cyclic stress intensity. 4. The formation rate of the active surface on metal is slower than the mechano-chemical reaction rate in First Region. The crack growth rate depends on time and the cyclic stress intensity and is expressed as the following equation. (dc/dN)$_{I}$=C(/DELTA. K)$^{\delta}$ 5. The formation rate of the active surface is faster than the mechano-chemical reaction rate in Second Region and the synergistic effect by stress and corrosion becomes slow. In case the fatigue load is large, we have the critical crack growth rate which is not related to the cyclic stress intensity. 6. The corrosion crack growth rate by the mechano-chemical reaction is the same in $H_{2}$S $O_{4}$ solution and salt water, so Hydrogen accelerates the crack growth. 7. The environment has no effect on the corrosion fatigue crack growth rate in Third Region. 8. In First Region and Second Region, dimple is observed on the fatigue fracture surface in 0.1N $H_{2}$S $O_{4}$ solution. 9. The striation is observed in any environment as in air in Third Region and its interval approximately coincide with the crack growth rate.ate.e.e.

  • PDF

A Study on Fatigue Crack Propagation Behavior with Pure-Ti Plate (순수 티타늄 판재의 피로균열 전파거동에 관한 연구)

  • 오세욱;김태형;김득진;임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.92-100
    • /
    • 1995
  • The effect of different anisotropy and stress ratio on fatigue crack propagation behavior was investigated under various stress ratio(R=-0.4, -0.2, 0.2, 0.2, 0.4) using pure titanium sheet used in aerospace, chemical and food industry. The rack closure behavior under constant load amplitude fatigue crack propagation test was examined. Fatigue crack propagation rate da/dN was estimated in terms of effective stress intensity factor range, $\Delta$K$_{eff}$, regardless of various stress ratio but was influenced by anisotropy. Also, it was found that the effect of anisotropy was considerably decreased but still not negligible when he da/dN was evaluated by a conventional parameter, $\Delta$$K_{eff}$/E and when the modified da/dN.$\sqrt{\varepsilon}_f$ was evaluated by $\Delta$$K_{eff}$/E. On the other hand, da/dN could be evaluated uniquely by effective new parameter, $\Delta$K$_{eff}$/$sigma_{ys}$, regardless of anisotropy, as int he following equation da/dN=C''[\frac{{\Delta}K_{eff}}{{\sigma}_{ys}}]^{n''}. And effective stress intensity factor range ratio, U was estimated by the following equation with respect to the ratio of reversed plastic zone size, $\Delta r_{p}$ to monotonic plastic zone size, $r_p$ regardless of stress ratio and anisotropy. U=-4.45$(\Delta r_{p}/r_{p})^{2}$+4.1$(\Delta r_{p}/r_{p})$+0.245_{p})$+0.245

  • PDF

Relationship between the Progression of Kyphosis in Thoracolumbar Osteoporotic Vertebral Compression Fractures and Magnetic Resonance Imaging Findings (흉요추 골다공증성 압박 골절에서의 후만 변형의 진행과 자기공명영상 소견 사이의 관계)

  • Jun, Deuk Soo;Baik, Jong-Min;Kwon, Hyuk Min
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.336-342
    • /
    • 2019
  • Purpose: To examine the relationship between the progression of a kyphotic deformity and the magnetic resonance imaging (MRI) findings in conservatively treated osteoporotic thoracolumbar compression fracture patients. Materials and Methods: This study categorized the patients who underwent conservative treatment among those patients who underwent treatment under the suspicion of a thoracolumbar compression fracture from January 2007 to March 2016. Among them, this retrospective study included eighty-nine patients with osteoporosis and osteopenia with a bone density of less than -2.0 and single vertebral body fracture. This study examined the MRI of anterior longitudinal ligament or posterior longitudinal ligament injury, superior or inferior endplate disruption, superior of inferior intravertebral disc injury, the presence of low signal intensity on T2-weighted images, and bone edema of intravertebral bodies in fractured intravertebral bodies. Results: In cases where the superior endplate was disrupted or the level of bone edema of the intravertebral bodies was high, the kyphotic angle, wedge angle, and anterior vertebral compression showed remarkably progression. In the case of damage to the anterior longitudinal ligament or the superior disc, only the kyphotic angle was markedly prominent. On the T2-weighted images, low signal intensity lesions showed a high wedge angle and high anterior vertebral compression. On the other hand, there were no significant correlations among the posterior longitudinal ligament injury, inferior endplate disruption, inferior disc injury, and the progression of kyphotic deformity and vertebral compression. The risk factors that increase the kyphotic angle by more than 5° include the presence of injuries to the anterior longitudinal ligament, superior endplate disruption, and superior disc injury, and the risk factors were 21.3, 5.1, and 8.5 times higher than those of the uninjured case, and the risk differed according to the level of bone edema. Conclusion: An osteoporotic thoracolumbar compression fracture in osteoporotic or osteopenic patients, anterior longitudinal ligament injury, superior endplate and intravertebral disc injury, and high level of edema in the MRI were critical factors that increases the risk of kyphotic deformity.

A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma (하지 연부조직육종을 위한 방사선치료기술 별 선량평가 연구)

  • Lee, SolMin;Song, Seongchan;Hyun, Sung Eun;Park, Heung Deuk;Lee, Jaegi;Kim, Young Suk;Kim, Gwi Eon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma For the lower extremity soft tissue sarcoma, volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy were evaluated to compare these three treatment planning technique. The mean doses to the planning target volume and the femur were calculated to evaluate target coverage and the risk of bone fracture during radiation therapy. Volumetric modulated arc therapy can reduce the dose to the femur without compromising target coverage and reduce the treatment time compared with intensity modulated radiation therapy.

  • PDF

Mode III fracture analysis of piezoelectric materials by Trefftz BEM

  • Qin, Qing-Hua
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.225-239
    • /
    • 2005
  • Applications of the Trefftz boundary element method (BEM) to anti-plane electroelastic problems are presented in this paper. Both direct and indirect methods with domain decomposition are discussed in details. Each crack is treated as semi-infinite thin slit defined in a subregion, for which a particular solution of the anti-plane problem, satisfying exactly the crack-face condition, is derived. The stress intensity factors defined at each crack tip can be directly computed from the coefficients of the particular solution. The performance of the proposed formulation is assessed by two examples and comparison is made with results obtained by other approaches. The Trefftz boundary element approach is demonstrated to be suitable for the analysis of the anti-plane problem of piezoelectric materials.

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.