• Title/Summary/Keyword: Fracture initiation

Search Result 449, Processing Time 0.023 seconds

Two-Parameter Characterization for the Resistance Curves of Ductile Crack Growth (연선균열성장 저항곡선에 대한 2매개변수의 특성)

  • X.K.Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.488-503
    • /
    • 1999
  • The present paper considers the constraint effect on J-R curves under the two-parameter $J-A_2$ controlled crack growth within a certain amount of crack extension. Since the parameter $A_2$ in $J-A_2$ three-term solution is independent of applied loading under fully plasticity or large-scale defor-mation $A_2$ is a proper constraint parameter uring crack extension. Both J and $A_2$ are used to char-acterize the resistance curves of ductile crack growth using J as the loading level and $A_2$ are used to char-acterize the resistance curves of ductile crack growth using J as the loading level and A2 as a con-straint parameter. Approach of the constraint-corrected J-R curve is proposed and a procedure of transferring the J-R curves determined from standard ASTM procedure to non-standard speci-mens or real cracked structures is outlined. The test data(e.g. initiation toughness JIC and tearing modulus $T_R$) of Joyce and Link(Engineer-ing Fracture Mechanics 1997, 57(4) : 431-446) for single-edge notched bend[SENB] specimen with from shallow to deep cracks is employed to demonstrate the efficiency of the present approach. The variation of $J_{IC}$ and $T_R$ with the constraint parameter $A_2$ is obtained and a con-straint-corrected J-R curves is constructed for the test material of HY80 steel. Comparisons show that the predicted J-R curves can very well match with the experimental data for both deep and shallow cracked specimens over a reasonably large amount of crack extension. Finally the present constraint-corrected J-R curve is used to predict the crack growth resistance curves for different fracture specimens. over a reasonably large amount of crack extension. Finally the present constraint-corrected J-R curve is used to predict the crack growth resistance curves for different fracture specimens. The constraint effects of specimen types and specimen sizes on the J-R curves can be easily obtained from the constrain-corrected J-R curves.

  • PDF

Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel (페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향)

  • Kwon, Daehyun;Noh, Sanghoon;Lee, Jung Gu
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Zolpidem Use and Risk of Fracture in Elderly Insomnia Patients

  • Kang, Dong-Yoon;Park, So-Young;Rhee, Chul-Woo;Kim, Ye-Jee;Choi, Nam-Kyong;Lee, Joong-Yub;Park, Byung-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.4
    • /
    • pp.219-226
    • /
    • 2012
  • Objectives: To evaluate the risk of fractures related with zolpidem in elderly insomnia patients. Methods: Health claims data on the entire South Korean elderly population from January 2005 to June 2006 were extracted from the Health Insurance Review and Assessment Service database. We applied a case-crossover design. Cases were defined as insomnia patients who had a fracture diagnosis. We set the hazard period of 1 day length prior to the fracture date and four control periods of the same length at 5, 10, 15, and 20 weeks prior to the fracture date. Time independent confounding factors such as age, gender, lifestyle, cognitive function level, mobility, socioeconomic status, residential environment, and comorbidity could be controlled using the case-crossover design. Time dependent confounding factors, especially co-medication of patients during the study period, were adjusted by conditional logistic regression analysis. The odds ratios and their 95% confidence intervals (CIs) were estimated for the risk of fracture related to zolpidem. Results: One thousand five hundred and eight cases of fracture were detected in insomnia patients during the study period. In our data, the use of zolpidem increased the risk of fracture significantly (adjusted odds ratio [aOR], 1.72; 95% CI, 1.37 to 2.16). However, the association between benzodiazepine hypnotics and the risk of fracture was not statistically significant (aOR, 1.00; 95% CI, 0.83 to 1.21). Likewise, the results were not statistically significant in stratified analysis with each benzodiazepine generic subgroup. Conclusions: Zolpidem could increase the risk of fracture in elderly insomnia patients. Therefore zolpidem should be prescribed carefully and the elderly should be provided with sufficient patient education.

New Fracture Toughness Test Method of Zircaloy-4 Nuclear Fuel Cladding (Zircaloy-4 핵연료 피복관의 신파괴인성 시험법)

  • Oh, Dong-Joon;Ahn, Sang-Bok;Hong, Kwon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.823-832
    • /
    • 2003
  • To define the causes of cladding degradation which can take place during the operation of nuclear power plants, it is required to develop the new fracture toughness test of spent fuel cladding. The fracture toughness of Zircaloy-4 cladding was estimated using the recently developed KAERI embedded Charpy (KEC) specimen. Axially notched KEC specimens cut directly from unirradiated fuel claddings, were tested in a way similar to the standard toughness test method of a Single Edge Bending (SEB) specimen. The results of KEC fracture toughness test at room temperatures were discussed and compared with those of the previous other studies. In conclusions, even though the KEC fracture toughness test of nuclear fuel claddings was easier and more reliable than those developed earlier, the results from the cladding fracture tests were not the material characteristics but the specific fracture parameters which were deeply related to the specification of claddings. In addition, the phenomenon of a thickness yielding was not observed from the fracture surface. It was closely related to the fact that the plane strain condition of the KEC specimen was changed to the plane stress condition during crack advancing. It was also supported by the fractographic evidence that the formation of ductile dimples at the crack initiation became the similar appearance such as a quasi-cleavage after the sufficient crack advancing.

Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling (응집영역 모델링 기법을 사용한 노치가 있는 적층복합재료의 파괴해석)

  • Woo, Kyeongsik;Cairns, Douglas S.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • In this paper, fracture behavior of laminated composites with notch was studied by cohesive zone modeling approach. The numerical modeling proceeded by first generating 3 dimensional solid element meshes for notched laminated composite coupon configurations. Then cohesive elements representing failure modes of fiber fracture, matrix cracking and delamination were inserted between bulk elements in all regions where the corresponding failures were likely to occur. Next, progressive failure analyses were performed simulating uniaxial tensile tests. The numerical results were compared to those by experiment available in the literature for verification of the analysis approach. Finally, notched laminated composite configurations with selected stacking sequences were analyzed and the failure behavior was carefully examined focusing on the failure initiation and progression and the dominating failure modes.

Rigid-Plastic Finite Element Approach to Hydroforming Process and Its Application (하이드로 포밍 성형공정 해석을 위한 강소성 유한요소 프로그램 개발 및 적용)

  • 강범수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.22-28
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit for two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral i is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

The Effect of Heat Input on Fracture Toughness(CTOD) in Submerged Arc Offshore Steel Weldments (해양구조용강재의 SA용접부에서 입열량이 파괴인성에 미치는 영향에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Shin, Yong-Taek;Lee, Hae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.40-47
    • /
    • 2004
  • The influence of heat input on fracture toughness was investigated in SAW weldments, which were prepared at two different welding conditions in API 2W Gr.50 and EN10225 5420. By examining the fracture initiation point, refined areas(ICHAZ and SCHAZ) in weld metal was identified as local brittle zone, in which M-A constituents and coarsed grain size were observed. Impact values showed the most significant difference at root portion, and CTOD transition temperature was related with impact values obtained at root portion. Hardness values in refined area were less than columnar microstructure about 20 HV5.

The Influence on the Corrosion Fatigue Crack Propagation in Changing of the Second Phase Hardness of Dual Phase Steel (複合組織鋼의 第2相 硬度變化가 腐蝕疲勞 크랙傳播에 미치는 影響)

  • 오세욱;김웅집
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.42-52
    • /
    • 1993
  • The corrosion fatigue fracture behaviour of dual phase steel was investigated in 3% NaCl solution at 302MPa and 137MPa. Fatigue test was conducted by cantilever type of self-made rotary bending fatigue testing machine. The fatigue strength increased with increasing the hardness of 2nd phase. Corrosion pit originated at the boundary of the 2nd phase. The size and number of corrosion pits were influenced by the 2nd phase hardness, and pits remained constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of .DELTA. K and da/dN has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the greater the corrosion fatigue life becomes. Corrosion fatigue fracture behaviour was primarily effected by mechanical factor in case of high stress(302MPa), but by electro-chemical reaction in a lower stress(137MPa). As stress level got lower and hardness of the 2nd phase got higher, the roughness of fracture surface increased.

  • PDF