DOI QR코드

DOI QR Code

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models

선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측

  • Park, Sung-Ju (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Park, Byoungjae (Korea Research Institute of Ships and Ocean Engineering) ;
  • Choung, Joonmo (Department of Naval Architecture and Ocean Engineering, Inha University)
  • 박성주 (인하대학교 조선해양공학과) ;
  • 박병재 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정준모 (인하대학교 조선해양공학과)
  • Received : 2017.06.24
  • Accepted : 2017.08.18
  • Published : 2017.08.31

Abstract

A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Keywords

References

  1. ASTM E8, 2004. Standard Test Methods of Tension Testing of Metallic Materials. American Society for Testing and Materials.
  2. Bao, Y., Wierzbicki, T., 2004. On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space. International Journal of Mechanical Sciences, 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  3. Bai, Y., Wierzbicki, T., 2008. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
  4. Bai, Y., 2008. Effect of loading history on necking and fracture., PhD dissertation, Massachusetts Institute of Technology.
  5. Bai, Y., Wierzbicki, T., 2010. Application of extended mohrcoulomb criterion to ductile fracture. International Journal of Fracture. 161, 1-20. https://doi.org/10.1007/s10704-009-9422-8
  6. Basu, S., Benzerga, A.A., 2015. On the path-dependence of the fracture locus in ductile materials: Experiments. International Journal of Solids and Structures, 71, 79-90. https://doi.org/10.1016/j.ijsolstr.2015.06.003
  7. Benzerga, A.A., Surovik, D., Keralavarma, S.M., 2012. On the Path-dependence of the Fracture Locus in Ductile Materials-analysis. International Journal of Plasticity, 37, 157-170. https://doi.org/10.1016/j.ijplas.2012.05.003
  8. Bridgman, P. W. 1952, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York.
  9. Choung, J., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of Marine Structural Steel, part III: Experimental Study on Failure Strain. Journal of Ocean Engineering and Technology, 25(3), 53-66. https://doi.org/10.5574/KSOE.2011.25.3.053
  10. Choung, J., Shim C.S., Song H.C., 2012. Estimation of Failure Strain of EH36 High Strength Marine Structural Steel using Average Stress Triaxiality. Marine Structures, 29(1), 1-21. https://doi.org/10.1016/j.marstruc.2012.08.001
  11. Choung, J., Nam, W., 2013. Formulation of Failure Strain According to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26. https://doi.org/10.5574/KSOE.2013.27.2.019
  12. Choung, J., Nam, W., Kim, Y., 2014a. Fracture Simulation of Low-temperature High-strength Steel (EH36) using User-subroutine of Commercial Finite Element Code. Journal of Ocean Engineering and Technology, 28(1), 34-46. https://doi.org/10.5574/KSOE.2014.28.1.034
  13. Choung, J., Nam, W., Lee, D., Song, S.Y., 2014b. Failure Strain Formulation Via Average Stress Triaxiality of an High Strength Steel for Arctic Structures. Ocean Engineering, 91, 218-226. https://doi.org/10.1016/j.oceaneng.2014.09.019
  14. Choung, J., Park, S.J., Kim, Y., 2015a. Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies. Journal of Ocean Engineering and Technology. 29(6), 445-453 https://doi.org/10.5574/KSOE.2015.29.6.445
  15. Choung, J., Park, S.J., Kim, Y., 2015b. Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface. Journal of Ocean Engineering and Technology. 29(6), 454-462. https://doi.org/10.5574/KSOE.2015.29.6.454
  16. Coffin Jr., L.F., Tavernelli, J.F., 1959. The cyclic straining and fatigue of metals. Transactions of the Metallurgical Society of AIME, 215, 794-807.
  17. Cortese, L., Coppola, T., Campanelli, F., Campana, F., Sasso, M., 2014. Prediction of ductile failure in materials for onshore and offshore pipeline applications. International Journal of Damage Mechanics. 23(1), 104-123 https://doi.org/10.1177/1056789513485967
  18. Fischer, F.D., Kolednik, O., Shan, G.X., Rammerstorfer, F.G., 1995. A Note On Calibration Of Ductile Failure Damage Indicators. International Journal of Fracture. 73(4), 345-357. https://doi.org/10.1007/BF00027274
  19. Lemaitre, J. 1985. A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology. 107, 83-89. https://doi.org/10.1115/1.3225775
  20. Lode, W., 1926. Versuche uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle, Eisen, Kupfer und Nickel, Z. Phys., 36, 913-939. https://doi.org/10.1007/BF01400222
  21. Mohr, D., Marcadet, S., 2015. Micromechanically-motivated Phenomenological Hosford-Coulomb Model For Predicting Ductile Fracture Initiation At Low Stress Triaxialites. International Journal of Solids and Structures. 67-68, 40-55. https://doi.org/10.1016/j.ijsolstr.2015.02.024
  22. Osgood, C.C., 1982. Fatigue Design, 2nd ed. Pergamon Press, New York.
  23. Park, S.J., Lee, K., Choung, J., 2016. Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface. Journal of Ocean Engineering and Technology, 30(6), 474-483. https://doi.org/10.5574/KSOE.2016.30.6.474
  24. Papasidero, J., Doquet, V., Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao-Wierzbicki results revisited. International Journal of Solids and Structures. 69-70, 459-474. https://doi.org/10.1016/j.ijsolstr.2015.05.006
  25. Rice J.R., Tracey, D.M., 1969. On the Ductile Enlargement of Voids in Triaxial Stress Fields. Journal of the Mechanics and Physics of Solids, 17, 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  26. Simulia, 2008. Abaqus User Manual. Silumia.
  27. Yu, H., Olsen, J.S., He, J., Zhang, Z., 2016. Effects of loading path on the fracture loci in a 3D space. Engineering Fracture Mechanics, 151, 22-36. https://doi.org/10.1016/j.engfracmech.2015.11.005
  28. Xue, L., 2007. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures. 44, 5163-5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026