References
- ASTM E8, 2004. Standard Test Methods of Tension Testing of Metallic Materials. American Society for Testing and Materials.
- Bao, Y., Wierzbicki, T., 2004. On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space. International Journal of Mechanical Sciences, 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
- Bai, Y., Wierzbicki, T., 2008. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
- Bai, Y., 2008. Effect of loading history on necking and fracture., PhD dissertation, Massachusetts Institute of Technology.
- Bai, Y., Wierzbicki, T., 2010. Application of extended mohrcoulomb criterion to ductile fracture. International Journal of Fracture. 161, 1-20. https://doi.org/10.1007/s10704-009-9422-8
- Basu, S., Benzerga, A.A., 2015. On the path-dependence of the fracture locus in ductile materials: Experiments. International Journal of Solids and Structures, 71, 79-90. https://doi.org/10.1016/j.ijsolstr.2015.06.003
- Benzerga, A.A., Surovik, D., Keralavarma, S.M., 2012. On the Path-dependence of the Fracture Locus in Ductile Materials-analysis. International Journal of Plasticity, 37, 157-170. https://doi.org/10.1016/j.ijplas.2012.05.003
- Bridgman, P. W. 1952, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York.
- Choung, J., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of Marine Structural Steel, part III: Experimental Study on Failure Strain. Journal of Ocean Engineering and Technology, 25(3), 53-66. https://doi.org/10.5574/KSOE.2011.25.3.053
- Choung, J., Shim C.S., Song H.C., 2012. Estimation of Failure Strain of EH36 High Strength Marine Structural Steel using Average Stress Triaxiality. Marine Structures, 29(1), 1-21. https://doi.org/10.1016/j.marstruc.2012.08.001
- Choung, J., Nam, W., 2013. Formulation of Failure Strain According to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26. https://doi.org/10.5574/KSOE.2013.27.2.019
- Choung, J., Nam, W., Kim, Y., 2014a. Fracture Simulation of Low-temperature High-strength Steel (EH36) using User-subroutine of Commercial Finite Element Code. Journal of Ocean Engineering and Technology, 28(1), 34-46. https://doi.org/10.5574/KSOE.2014.28.1.034
- Choung, J., Nam, W., Lee, D., Song, S.Y., 2014b. Failure Strain Formulation Via Average Stress Triaxiality of an High Strength Steel for Arctic Structures. Ocean Engineering, 91, 218-226. https://doi.org/10.1016/j.oceaneng.2014.09.019
- Choung, J., Park, S.J., Kim, Y., 2015a. Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies. Journal of Ocean Engineering and Technology. 29(6), 445-453 https://doi.org/10.5574/KSOE.2015.29.6.445
- Choung, J., Park, S.J., Kim, Y., 2015b. Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface. Journal of Ocean Engineering and Technology. 29(6), 454-462. https://doi.org/10.5574/KSOE.2015.29.6.454
- Coffin Jr., L.F., Tavernelli, J.F., 1959. The cyclic straining and fatigue of metals. Transactions of the Metallurgical Society of AIME, 215, 794-807.
- Cortese, L., Coppola, T., Campanelli, F., Campana, F., Sasso, M., 2014. Prediction of ductile failure in materials for onshore and offshore pipeline applications. International Journal of Damage Mechanics. 23(1), 104-123 https://doi.org/10.1177/1056789513485967
- Fischer, F.D., Kolednik, O., Shan, G.X., Rammerstorfer, F.G., 1995. A Note On Calibration Of Ductile Failure Damage Indicators. International Journal of Fracture. 73(4), 345-357. https://doi.org/10.1007/BF00027274
- Lemaitre, J. 1985. A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology. 107, 83-89. https://doi.org/10.1115/1.3225775
- Lode, W., 1926. Versuche uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle, Eisen, Kupfer und Nickel, Z. Phys., 36, 913-939. https://doi.org/10.1007/BF01400222
- Mohr, D., Marcadet, S., 2015. Micromechanically-motivated Phenomenological Hosford-Coulomb Model For Predicting Ductile Fracture Initiation At Low Stress Triaxialites. International Journal of Solids and Structures. 67-68, 40-55. https://doi.org/10.1016/j.ijsolstr.2015.02.024
- Osgood, C.C., 1982. Fatigue Design, 2nd ed. Pergamon Press, New York.
- Park, S.J., Lee, K., Choung, J., 2016. Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface. Journal of Ocean Engineering and Technology, 30(6), 474-483. https://doi.org/10.5574/KSOE.2016.30.6.474
- Papasidero, J., Doquet, V., Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao-Wierzbicki results revisited. International Journal of Solids and Structures. 69-70, 459-474. https://doi.org/10.1016/j.ijsolstr.2015.05.006
- Rice J.R., Tracey, D.M., 1969. On the Ductile Enlargement of Voids in Triaxial Stress Fields. Journal of the Mechanics and Physics of Solids, 17, 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
- Simulia, 2008. Abaqus User Manual. Silumia.
- Yu, H., Olsen, J.S., He, J., Zhang, Z., 2016. Effects of loading path on the fracture loci in a 3D space. Engineering Fracture Mechanics, 151, 22-36. https://doi.org/10.1016/j.engfracmech.2015.11.005
- Xue, L., 2007. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures. 44, 5163-5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026