• Title/Summary/Keyword: Fracture Toughness Testing

Search Result 116, Processing Time 0.017 seconds

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

Evaluation of Toughness Degradation of 1Cr-1Mo-0.25V Steel by Electrical Resistivity (전기비저항을 이용한 1Cr-1Mo-0.25V강의 인성열화도 평가)

  • Nahm, S.H.;Yu, K.M.;Kim, A.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • Remaining life of turbine rotors with a crack can be assessed by the fracture toughness of the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at $630^{\circ}C$. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity.

  • PDF

Evaluation of thermal shock resistance and thermal shock fracture toughness using $CO_2$ laser for ATJ graphite (ATJ 그라파이트의 $CO_2$ 레이저를 이용한 열충격 강도 및 열충격 파괴인성 평가)

  • Kim, Jae-Hoon;Lee, Young-Sin;Park, No-Seok;Kim, Duk-Hoi;Han, Young-Wook;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The purpose of this study is to evaluate thermal shock resistance and thermal shock fracture toughness for ATJ graphite. Thermal shock resistance and thermal shock fracture toughness of ATJ graphite are evaluated by using CO$_2$ laser irradiation technique. The laser heat source is irradiated at the center of specimens. Temperature distribution on the specimen surface is measured using the thermocouples of type K and C. SEM and radiographic images are used to observe the cracks which are formed at the thermal shock specimens.

  • PDF

Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding (간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선)

  • 임승규;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.425-434
    • /
    • 1984
  • The concept of intermittent interlaminar bonding is investigated as a means of improving the fracture toughness of cross-ply Gr/Ep composites without significant loss of tensile strength and modulus. The concept of linear elastic fracture mechanics(LEFM)is used to study the effects of strong bonded area and bonding composites. The experimental results indicate that the fracture toughness and notch strength of intermittent interlaminar bonded composities are improved and the tensile strength only decreased by 3-8% in comparison to those of the fully bonded composites. Damage zones around the crack tip are detected by the modified X-Ray non-destructive testing technique and the fractography. The improvement of toughness is explained based on the damage zones. The mechanisms of damage zone are shown to be caused by subcrack along the fiber on the 0.deg. ply, matrix cracking along the fiber on the 90.deg. ply, interlaminar delamination, and ply pull-out of the 0.deg. ply.

Prediction of Failure Behavior for Nuclear Piping Using Curved Wide-Plate Test (흰 광폭평판 시험을 이용한 원자력 배관의 파괴거동예측)

  • Huh, Nam-Su;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin;Lim, Hyuk-Soon;Chung, Dae-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.352-361
    • /
    • 2004
  • One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from the C(T) specimen. It is shown that the J-resistance curve form the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed 3-D FE analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.

Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic

  • Triwatana, Premwara;Srinuan, Phakphum;Suputtamongkol, Kallaya
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • PURPOSE. The objective of this study was to compare the fracture toughness ($K_{Ic}$) obtained from the single edge V-notched beam (SEVNB) and the fractographic analysis (FTA) of a glass-infiltrated and a zirconia ceramic. MATERIALS AND METHODS. For each material, ten bar-shaped specimens were prepared for the SEVNB method ($3mm{\times}4mm{\times}25mm$) and the FTA method ($2mm{\times}4mm{\times}25mm$). The starter V-notch was prepared as the fracture initiating flaw for the SEVNB method. A Vickers indentation load of 49 N was used to create a controlled surface flaw on each FTA specimen. All specimens were loaded to fracture using a universal testing machine at a crosshead speed of 0.5-1 mm/min. The independent-samples t-test was used for the statistical analysis of the $K_{Ic}$ values at ${\alpha}$=0.05. RESULTS. The mean $K_{Ic}$ of zirconia ceramic obtained from SEVNB method ($5.4{\pm}1.6\;MPa{\cdot}m^{1/2}$) was comparable to that obtained from FTA method ($6.3{\pm}1.6\;MPa{\cdot}m^{1/2}$). The mean $K_{Ic}$ of glass-infiltrated ceramic obtained from SEVNB method ($4.1{\pm}0.6\;MPa{\cdot}m^{1/2}$) was significantly lower than that obtained from FTA method ($5.1{\pm}0.7\;MPa{\cdot}m^{1/2}$). CONCLUSION. The mean $K_{Ic}$ of the glass-infiltrated and zirconia ceramics obtained from the SEVNB method were lower than those obtained from FTA method even they were not significantly different for the zirconia material. The differences in the $K_{Ic}$ values could be a result of the differences in the characteristics of fracture initiating flaws of these two methods.

A Study of Crack Growth Behavior of Al2024 (Al2024의 균열성장거동에 관한 연구)

  • Lee, Won-Seok;Lee, Hyun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2000
  • This study describes the fatigue characteristics for Al2024 alloy, which is aircraft structure material. For this work, the plane-strain fracture toughness test, the plane-stress fracture toughness test and the crack growth rates test were conducted under the standard testing method. Test equipment is a computer-controlled closed-loop fatigue testing machine. The data of each test result is very important to aircraft structure reliability estimation, life prediction, design analysis, endurance analysis and damage tolerance analysis. In addition, the fatigue crack growth threshold($\DeltaKth$) value decreased as the stress ratio increased. Also, $\DeltaKth$ decreased as the thickness increased in LT, TL directions.

  • PDF

Estimation of Fracture Toughness Degradation of High Temperature Materials by Nonlinear Acoustic Effects (비선형 음향효과에 의한 고온 재료의 파괴인성 열화도 평가)

  • Jeong, Hyun-Jo;Nahm, Seung-Hoon;Jhang, Kyung-Young;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.424-430
    • /
    • 2000
  • In order to develop an ultrasonic evaluation method for properties degradation of high temperature materials, a number of Cr-Mo-V steel samples were heat-treated and their damage mechanism was examined. Ultrasonic parameters such as velocity, attenuation, and more recently developed nonlinear acoustic parameter were measured. The nonlinear acoustic parameter was found to be most sensitive to material degradation mainly attributed to the precipitation of impurities in grain boundaries. When compared to the electrical resistivity results, the nonlinear parameters showed similar behavior. There existed a relatively good correlation between the nonlinear parameter and the fracture appearance transition temperature (FATT) obtained by Charpy V-notch impact test. Based on the relationship between the FATT and the fracture toughness ($K_{IC}$), correlation between the nonlinear parameter and $K_{IC}$ was established.

  • PDF

Analysis of Dynamic Fracture Behavior by Using Instrumented Charpy Impact Test (계장화 샬피 충격시험에 의한 동적 파괴거동 해석)

  • Lee, O.S.;Kim, S.Y.;Hong, S.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.64-71
    • /
    • 1995
  • This investigation evaluates dynamic fracture characteristics of two alloy steels (STD-11 and STS-3) and a gray cast iron (GC-30). The dynamic fracture toughness of crack initiation and some of the dynamic fracturing characteristics were evaluated by using the instrumented Charpy impact testing procedures. It was found from experimental results for three kinds of materials that inertia force is directly proportional to impact velocity. The duration time of inertia force was found to be constant regardless of impact velocities in steel specimens.

  • PDF