• Title/Summary/Keyword: Fracture Parameter

Search Result 394, Processing Time 0.025 seconds

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

Analysis of Stress Singularity for the Excess Adhesive of Interface in Adhesively Bonded Joint (접착이음의 계면덧살에 대한 응력특이성 해석)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.439-445
    • /
    • 2012
  • The stress singularity for the excess adhesive on interface of adhesively bonded joint was investigated by using the 2-dimensional elastic boundary element method (BEM). To establish a reasonable strength evaluation method and a fracture criterion for the excess adhesive of interface in adhesively bonded joint, it is necessary to evaluate fracture parameters with various bonding conditions. Under the variations of adhesively bonded thickness (h) and diameter (d) for the excess adhesive, a stress analysis was performed, and from the results, the stress singularity index (${\lambda}$) and the stress singularity factor (${\Gamma}$) were calculated. The variations have a great influences on the stress singularity for the excess adhesive of interface in adhesively bonded joint, and the ${\Gamma}$ is reduced as the "h" and "d" increase.

Impact Fracture and Shear Strength Characteristics on Interfacial Reaction Layer of Nb/MoSi2 Laminate Composite

  • Lee, Sang-Pill;Yoon, Han-Ki;Park, Won-Jo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2000
  • The present study dealt with the relationships among the interfacial shear strength, the thickness of interfacial reaction layer and the impact value of $Nb/MoSi_2$ laminate composites. In addition, the tensile test was conducted to evaluate the fracture strain of $Nb/MoSi_2$ laminate composites. To change the thickness of the reaction layer, $Nb/MoSi_2$ laminate composites alternating sintered MoSi2 layers and Nb foils were fabricated as the parameter of hot press temperature. It has been found that the growth of the reaction layer increases the interfacial shear strength and decreases the impact value by localizing a plastic deformation of Nb foil. There also exist appropriate shear strength and the thickness of the reaction layer, which are capable of maximizing the fracture energy of $Nb/MoSi_2$.

  • PDF

Application of Fractal Geometry on the Static Growing Crack of STS316 CT Specimen with a Side Groove (측면 홈을 가지는 STS316 CT시험편의 정적 성장균열에 대한 프랙탈 기하학의 응용)

  • Yun, Yu-Seong;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.38-44
    • /
    • 2002
  • The application of fractal concept provides an useful method in the study for the quantitative analysis of irregular variations like the fracture surfaces and crack profiles. Fractal curves have characteristics that represents a self-similarity based on the fractal dimension. The fractal dimensions were obtained by the box counting method. In this report, we obtained the nearly stable fractal dimensions of fracture crack profiles for STS316 with CT specimen as the crack advances and the relationships between crack length and fractal dimension. Moreover fractal fracture parameter that corresponds to J-R curve is shown by the relationships between fractal dimension and crack extension. From the results, we concluded that crack extension of high toughness material also shows the fractal characteristics, which can be used in order to evaluate the crack life precisely.

A Study on the characteristics of the Signals of AE according to Fracture mode of CFRP (Carbon Fiber Reinforced Plastic(CFRP)복합재의 파괴 거동에 따른 Acoustic Emission(AE)신호 특성에 관한 연구)

  • Lee, Kyung-Won;Kim, Jong-Hyun;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.42-47
    • /
    • 2009
  • Recently, the wide range of the composite materials is used for the making airplanes, trains and automobiles body for the lightweight. Despite having complex structures, composite materials usually have well defined mechanical characteristics. However, composite materials are difficult to understand the fracture mechanism clearly by simple mechanical test. Nondestructive evaluation (NDE) combined with mechanical testing can play a more important role and especially Acoustic Emission Testing (AET) would become known to be a useful tool to assess damage and fracture behavior of composites. In this study The experiment was performed to acquire the acoustic emission signal during tensile test using unidirectional CFRP specimen and the data was analyzed the acoustic emission parameters with the waveform.

  • PDF

The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  • Choe, Yeong;Lee, Gyu-Ho;Go, Dae-Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF

A Fundamental Study of Fractal Characteristics for a Crack Growth Profile (성장균열 형상에 대한 기초적 프랙탈 특성연구)

  • 권오헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.522-528
    • /
    • 1998
  • This paper presents a fundamental fractal characteristics of the growing crack that has an irregularity producing a zigzag crack contour. This irregularity is analysed by a fractal geometry in a box counting method that is a very simple technique. First the fractal dimensions and actual fractal extensive crack length are obtained. Also a fractal fracture energy relation with a fractal dimension is found so as to get fractal crack behaviors. Thus it can be shown that the fractal dimension has a possibility as a fracture parameter in a real crack growth length meaning.

  • PDF

Evaluation of the Fracture Toughness Transition Characteristics of RPV Steels Based on the ASTM Master Curve Method Using Small Specimens (소형시험편의 Master Curve 방법을 이용한 원자로 압력용기강의 파괴인성 천이특성평가)

  • Yang, Won-Jon;Heo, Mu-Yeong;Kim, Ju-Hak;Lee, Bong-Sang;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.303-310
    • /
    • 2000
  • Fracture toughness of five different reactor pressure vessel steels was characterized in the transition temperature region by the ASTM E1921-97 standard method using Charpy-sized small specimens. T he predominant fracture mode of the tested steels was transgranular cleavage in the test conditions. A statistical analysis based on the Weibull distribution was applied to the interpretation of the scattered fracture toughness data. The size-dependence of the measured fracture toughness values was also well predicted by means of the Weibull probabilistic analysis. The measured fracture toughness transition curves followed the temperature-dependence of the ASTM master curve within the expected scatter bands. Therefore, the fracture toughness characteristics in the transition region could be described by a single parameter, so-called the reference temperature (T。), for a given steel. The determined reference temperatures of the tested materials could not be correlated with the conventional index temperatures from Charpy impact tests.

Fracture Behavior Analysis in CFRP Specimens by Acoustic Emission and Ultrasonic Test (음향방출 및 초음파시험을 이용한 CFRP 시험편의 파괴 거동 해석)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • Damage Profess of CFRP laminates under monotonic tensile test was characterized by the correlation between Acoustic Emission(AE) and Ultrasonic Test(UT). The amplitude distribution of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pullout and fiber fracture as load is increased. In addtion, the characteristics of ultrasonic amplitude attenuation are useful lot analysis of the different type of fracture mechanism. Different orientation of carbon fiber reinforced plastic specimens were used to investigate the AE amplitude range and ultrasonic amplitude attenuation. Finally, loading-unloading tests were carried out to check Felicity effect. During the tests, ultrasonic amplitude attenuation was investigated at the same time and compared with AE parameters. The result showed that two parameters of both AE and UT could be effectively used for analysis of fracture mechanism in CFRP laminates.

  • PDF

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.