• Title/Summary/Keyword: Fracture Opening and Slip

Search Result 5, Processing Time 0.023 seconds

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

J and CTOD Estimation for Homogeneous and Bi-Material Fracture Toughness Testing Specimens

  • Lee, Hyungyil;Kim, Yun-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1079-1089
    • /
    • 2001
  • This paper proposes J and CTOD estimation schemes applied to fracture toughness testing, covering typical homogeneous and bi-material specimens. Recommendations are based on the plastic limit analysis (either slip line field or finite element limit analyses), assuming the rigid plastic material behavior. The main outcome of the present study is that the J and CTOD estimation schemes (both codified and non-codified), recommended for homogeneous specimens, can be equally used for bi-material specimens with interface cracks. The effect of yield strength mismatch in bi-material specimens on the J-integral CTOD is discussed.

  • PDF

A CLINICO-RADIOLOGIC STUDY OF BONY REMODELING OF THE FRACTURED CONDYLES IN CHILDREN (소아에서 골절된 하악과두의 골개조 양상에 관한 임상 및 방사선학적 연구)

  • Cho Jeong-Shin;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.471-482
    • /
    • 1995
  • Bony remodeling pattern of condyle fractures in children are different from in adult for growing of condyle, also might affect treatment and prognosis of the condyle fracture. Subjects of this clinical and radiologic study were 26 temporomandibular joints diagnosed as condyle fracture in 23 patients under 15 years old age. They were treated with conservative method at Dental Hospital of Yonsei University from Jan., 1986 to Oct., 1994. Bony remodeling related with fracture pattern was evaluated. The results obtained are as follows: 1. The ratio of male to female in patients with condyle fracture was 1 : 0.9 and the difference of sex ratio was not noted. Comparing with preschool-age group and school-age group, age frequency was higher in preschool-age group(83%). 2. Fallen down(54%) was the most frequent cause of condyle fractures. Traffic accident and slip down were followed. 3. The most common clinical sign of condyle fractures was tenderness to paipation09 cases). Mouth opening limitation07 cases), swelling(7 cases), malocclusion(3 cases) were next in order. 4. According to sites of condyle fractures, unilateral fractures were in 20 patients and bilateral fractures in 3 patients, therefore total 23 patients-26 cases of condyle fracture were observed. According to fracture distribution, condyle fractures were in 10 patients(44%). Condyle fractures with symphysis fracture(9 patients, 39%), condyle fractures with ascending ramus fracture(2 patients, 9%), condyle fracture with mandibular body fracture(1 patient, 4%), and condyle fractures with mandibular angle fracture(1 patient, 4%) were followed. 5. In displacement pattern of fractured fragment of mandibular condyle, dispiacement(17 cases, 66%) was most common. Dislocation(5 cases, 19%) and deviation (4 cases, 15%) were next in order. 6. During the observation period of fractured condyles, remodeling patterns of fracture sites related with articular fossa were observed with usual condylar shape in 23 cases and with prominently different shape in 3 cases.

  • PDF

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.