• Title/Summary/Keyword: Fracture Mechanism

Search Result 708, Processing Time 0.023 seconds

The Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.1.1-4
    • /
    • 1999
  • The toughening mechanism and fracture behavior of rubber/polymer composites were investigated with respect to two factors; (1) the composition ratio of polymers(PPO and PS which have a different chain flexibility) and (ii) the rubber particle size in PPO/PS blend system Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted, Finite element analysis were carried out to gain understanding of plastic deformation(shear yielding and crazing) of these materials.

  • PDF

Numerical analysis on the welding residual stress and fracture toughness of the heavy thick steel welded joints by welding processes

  • Bang, HanSur;Bang, HeeSeon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.32-39
    • /
    • 2015
  • This study examined the welding residual stress and fracture toughness of 78mm thick steel electro gas welding (EGW) and flux cored arc welding (FCAW) welded joints by numerical analyses of the thermal elasto-plastic behavior and fracture toughness(KIC). The residual stress, fracture toughness characteristics and production mechanism on the welded joints were clarified. Moreover, the effects of the welding process (EGW and FCAW) on the welding residual stresses and fracture toughness of welded joints were evaluated. The results showed that the new welding process (EGW) appears to be an effective substitute for the existing welding process (FCAW) in a thick steel plate with high strength.

Isolated Fracture Dislocation of the Tarsal Navicular -A case report- (족부 주상골의 단독 골절 탈구 -증례 보고-)

  • Lee, Young-Kuk;Ahn, Won-Il
    • Journal of Korean Foot and Ankle Society
    • /
    • v.3 no.1
    • /
    • pp.58-61
    • /
    • 1999
  • Isolated fracture dislocation of the tarsal navicular bone is extremely rare. The mechanism of injury of this fracture dislocation is known as a horizontal or axial load on plantar flexed foot. Closed or open reduction is recommended for displaced navicular fracture. We report one case of isolated fracture dislocation of the tarsal navicular which was treated with closed reduction and percutaneous K-wire fixation.

  • PDF

On Fracture Mechanism of SK-5 Steel by AE Method (AE에 의한 SK-5강의 파괴기구 구명)

  • Kim, Sang-Cheol;Lee, Ok-Seop;Ham, Kyeong-Chun;Oh, Beom-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.130-139
    • /
    • 1990
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, crack geometry and mechanical properties. It seems to be very important to investighate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their integrity. In this experimental research, fracture behaviors of SK-5 high carbon steel was investigated by using Acoustic Emission(AE) technique. Fracturing processes of materials were estimated through both the tension test with nominal specimens and the fracture test with compact tension specimens. The critical applied load which corresponds to the crack initiation and propagation is very improtant for the determination of yield strength of fracture toughness. The critical applied load($P_Q$) was determined through AE method and the source of AE signal was estimated by fractography analysis. The experimental results may contribute to the safety analyses and strength evaluation of structures.

  • PDF

Fracture and Wear Characteristics of Al-Si alloy used for Compressor (컴프레서용 Al-Si 합금의 파괴 및 마모 특성)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

A study on the Fracture Mechanical Strength Evaluation in Joint Interface of Ceramics and Metal (세라믹스/금속 접합계면에서의 파괴력학적 강도평가에 관한 연구)

  • 최병기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.20-24
    • /
    • 1996
  • Indentation fracture method and 4-point bending test are carried out to measure the residual stresses and the bending strength, and to investigate the mechanism of fracture mechanics in the bonded interface of ceramic and metal. The results obtained are as follows ; 1) The fracture patterns of bonded materials shows that the delamlnatlon fracture of Interfaces is stablely developed from the interfaces of ceramic/active metallic bonded materials at the specimen center, and the fracture is unstablely generated through a refraction on the middle ceramic. 2) Distribution of residual stresses is quantitatively investigated on the ceramic side of bonded materials. 3) It Is found that the residual stresses of interface vertical direction are concentrated on the bonded interface at the ceramic side.

  • PDF

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

Effects of Fracture Intersection Characteristics on Transport in Three-Dimensional Fracture Networks

  • Park, Young-Jin;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.27-30
    • /
    • 2001
  • Flow and transport at fracture intersections, and their effects on network scale transport, are investigated in three-dimensional random fracture networks. Fracture intersection mixing rules complete mixing and streamline routing are defined in terms of fluxes normal to the intersection line between two fractures. By analyzing flow statistics and particle transfer probabilities distributed along fracture intersections, it is shown that for various network structures with power law size distributions of fractures, the choice of intersection mixing rule makes comparatively little difference in the overall simulated solute migration patterns. The occurrence and effects of local flows around an intersection (local flow cells) are emphasized. Transport simulations at fracture intersections indicate that local flow circulations can arise from variability within the hydraulic head distribution along intersections, and from the internal no flow condition along fracture boundaries. These local flow cells act as an effective mechanism to enhance the nondiffusive breakthrough tailing often observed in discrete fracture networks. It is shown that such non-Fickian (anomalous) solute transport can be accounted for by considering only advective transport, in the framework of a continuous time random walk model. To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated.

  • PDF

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.