• Title/Summary/Keyword: Fracture Initiation

Search Result 449, Processing Time 0.034 seconds

Fracture toughness of Low-carbon steel using J-intergral Principle (J-적분을 이용한 저탄소강의 파괴탄성치 결정)

  • ;;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1979
  • The fracture toughness of a hot rolled 100 mm thick SS41 steel plate was investigated for various crack ratios and thichnesses using the method of J-integral. The experiments were performed on an MTS machine and the crack initiation point was detected by using an electricl impedance method. The J-integral computed at the initiation point of the slow stable crack growth was almost constant within the range of crack ratios tested. The fracture toughness thus obtained was $J_{1c}/=27.0kgf/mm$ for specimens having fracture plane parallel to the rolling direction and 35.5kgf/mm for those perpendicular to the rolling direction. The J- integral computed at maximum load point was found to be unsuitable for fracture toughness determination, becaese of large variation depending on the crack ratio and thickness. It was also found that the slow stable crack growth increases as the thickness and/or crack ration of the specimen decrease.

Effect of Wall Thinning on the Failure of Pipes Subjected to Bending Load (굽힘하중을 받는 배관의 파손에 미치는 감육의 영향)

  • Ahn Seok-Hwan;Nam Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.606-613
    • /
    • 2005
  • Effects of circumferentially local wall thinning on the fracture behavior of pipes were investigated by monotonic four-point bending. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area included an eroded ratio of d/t= 0.2, 0.5, 0.6, and 0.8, and an eroded length of ${\ell}\;=10mm,$ 25mm, and 120mm. Fracture type could be classified into ovalization, local buckling, and crack initiation depending on the eroded length and eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using the finite element method, which is able to accurately simulate fracture behaviors excepting failure due to cracking. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

Fracture Behavior of Welded Pipes with Local Wall Thinning (감육을 가지는 배관 용접부의 파괴거동)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Jeong, Jeong-Hwan;Kim, Yong-Un
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.90-95
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale welded and unwelded carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strengths of welded and unwelded piping system with local wall thinning were evaluated.

  • PDF

Dynamic and Quasi-Static Fracture Toughness of $Al_2O_3$ and $Al_2O_3$ Ceramic Matrix Composite Reinforced with Sic Whiskers ($Al_2O_3$$Al_2O_3$ -$SiC_w$ 복합재료의 동적 및 정적 파괴인성에 관한 연구)

  • 조경목;이성학;표성규;장영원
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 1990
  • This paper presents the influence of the loading rate on the room temperature fracture toughness of a brittle Al2O3 and a SiC whisker reinforced Al2O3 composite. Dynamic fracture toughness tests were conduced using compressive fatigue pre-cracked notched round bars loaded in tension to produce a stress intensity rate K1=106 MPa√m/sec. The experimental results show that for each loading rate the fracture toughness values obtained for the ceramic matrix composite are higher than the corresponding values for the single phase alumina. In addition, both the reinforced and unreinforced ceramic are singnificantly tougher under dynamic loading than static loading. This dynamic and quasi-static fracture initiation behaviro can be interpreted by identifying quantitatively the mode of fractuer initiation as a function of loading rate.

  • PDF

Fracture Behaviour of the AISI 4130 Surface Cracked Plate (AISI 4130 표면균열 판재의 파괴거동)

  • Kim, Jae-Hoon;Ong, Jang-Woo;Moon, Soon-Il;Kim, Seong-Eun;Koo, Song-Hoe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.114-119
    • /
    • 1996
  • In the case of surface cracked plate specimen, we can not measure the fracture toughness of ductile materials by the ASTM E 813 standard method. In this report, using the Acoustic Emission method, we found out crack initiation point and investigated fracture toughness which was calculated by FEM. The method used in this paper shows that fracture toughnes by using AE technique is reliable.

  • PDF

Experimental study on ductile crack initiation in compact section steel columns

  • Luo, Xiaoqun;Ge, Hanbin;Ohashi, Masatoshi
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.383-396
    • /
    • 2012
  • In order to develop a verification method for extremely low cycle fatigue (ELCF) of steel structures, the initiation mechanism of ductile cracks is investigated in the present study, which is the first step of brittle fracture, occurred in steel bridge piers with thick-walled sections. For this purpose, a total of six steel columns with small width-thickness ratios were tested under cyclic loading. It is found that ductile cracks occurred at the column base in all the specimens regardless of cyclic loading histories subjected. Moreover, strain history near the crack initiation location is illustrated and an index of energy dissipation amount is proposed to evaluate deformation capacity of structures.

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D.;Dewangan, Bhupendra;Raja, V.S.;Paulose, Neeta;Babu, Narendra
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.203-208
    • /
    • 2016
  • DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

An Evaluation of Dynamic Crack Initiation Toughness in SS41 Steel Welding (SS41강 용접부의 동적균열개시인성 평가)

  • 정재강;김건호
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.108-118
    • /
    • 1994
  • In the present study, the dynamic crack initiation toughness and total absorbed energy behavior of Heat Affected Zone(HAZ) was experimentally evaluated for SS41 steel welding. The materials were submerged arc-welded SS41 steel plate with thickness 19mm. The test temperature range was from $20^{\circ}C$(room temperature) to $-70^{\circ}C$ The HAZ of welding were divided into three sub-zones for analysis; H1, H2, H3, according to the distance from the fushion line. From the experimental studies, the reference value of dynamic crack initiation toughness $(J_{Id(R)})$ can be use to estimate dynamic fracture toughness characteristics of steel welding.

  • PDF

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

Applicability of Existing Fracture Initiation Models to Modern Line Pipe Steels

  • Shim, Do Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.1-24
    • /
    • 2016
  • The original fracture criteria developed by Maxey/Kiefner for axial through-wall and surface-cracked pipes have worked well for many industries for a large variety of relatively low strength and toughness materials. However, newer line pipe steels have some unusual characteristics that differ from these older materials. One example is a test data that has demonstrated that X80 line-pipe with an axial through-wall-crack can fail at pressures about 30 percent lower than predicted with commonly used analysis methods for older steels. Thus, it is essential to review the currently available models and investigate the applicability of these models to newer high-strength line pipe materials. In this paper, the available models for predicting the failure behavior of axial-cracked pipes (through-wall-cracked and external surface-cracked pipes) were reviewed. Furthermore, the applicability of these models to high-strength steel pipes was investigated by analyzing limited full-scale pipe fracture initiation test results. Based on the analyzed results, the shortcomings of the available models were identified. For both through-wall and surface cracks, the major shortcomings were related to the characterization of the material toughness, which generally leads to non-conservative predictions in the J-T analyses. The findings in this paper may be limited to the test data that were consider for this study. The requisite characteristics of a potential model were also identified in the present paper.