• Title/Summary/Keyword: Fracture Conductivity

Search Result 123, Processing Time 0.019 seconds

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

Effect of Cd Addition on the SCC Properties of Al-Cu-Mn Cast Alloys (Al-Cu-Mn주조합금의 SCC특성에 미치는 Cd첨가의 영향)

  • Lee, Chan-Hui;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Effect of Cd addition on the stress corrosion cracking(SCC) resistance of Al-Cu-Mn cast alloy was investigated by C-ring test and electrical conductivity measurement. With increasing Cd contents, the electrical conductivity and the SCC resistance were increased. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture made of the alloys was confirmed as intergranular type and showed brittle fracture surface. As a result, it was concluded that the SCC mechanism of these alloys is the anodic dissolution model. The maximum hardness was increased from 127Hv in the Cd-free alloy to 138∼145Hv in the Cd addition alloys.

  • PDF

A Review of Graphene Plasmons and its Combination with Metasurface

  • Liu, Chuanbao;Bai, Yang;Zhou, Ji;Zhao, Qian;Qiao, Lijie
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.349-365
    • /
    • 2017
  • Graphene has attracted a lot of attentions due to the unique electrical and optical properties. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz and mid-infrared and it demonstrates an extremely large confinement at the surface because of the particular electronic band structures. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. These features make graphene a promising candidate for plasmonics, biosensing and transformation optics. Furthermore, the combination of graphene and metasurfaces presents a powerful tunability for exotic electromagnetic properties, where the metasurfaces with the highly-localized fields offer a platform to enhance the interaction between the incident light and graphene and facilitate a deep modulation. In this paper, we provide an overview of the key properties of graphene, such as the surface conductivity, the propagating surface plasmon polaritons, and the localized surface plasmons, and the hybrid graphene/metasurfaces, either metallic and dielectric metasurfaces, from terahertz to near-infrared frequencies. Finally, there is a discussion for the current challenges and future goals.

Electrically Conductive Silicon Carbide without Oxide Sintering Additives

  • Frajkorova, Frantiska;Lences, Zoltan;Sajgalik, Pavol
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.342-346
    • /
    • 2012
  • This work deals with the preparation of dense SiC based ceramics with high electrical conductivity without oxide sintering additives. SiC samples with different content of conductive Ti-NbC phase were hot pressed at $1850^{\circ}C$ for 1 h in Ar atmosphere under mechanical pressure of 30 MPa. The conductive phase is a mixture of Ti-NbC in weight ratio of Ti/NbC 1:4. Composite with 50% of conductive Ti-NbC phase showed the highest electrical conductivity of $30.6{\times}10^3\;S{\cdot}m^{-1}$, while the good mechanical properties of SiC matrix were preserved (fracture toughness 4.5 $MPa{\cdot}m^{1/2}$ and Vickers hardness 18.7 GPa). The obtained results show that use of NbC and Ti as sintering and also electrically conductive additives is appropriate for the preparation of SiC-based composite with sufficient electrical conductivity for electric discharge machining.

Investigation of ground thermal characteristics for performance analysis of borehole heat exchanger (지중 열교환기 성능 분석을 위한 지반 열물성 조사)

  • Shim, Byoung-Ohan;Song, Yoon-Ho;Kim, Hyoung-Chan;Cho, Byong-Wook;Park, Deok-Won;Im, Do-Hyung;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • A detailed geothermal characteristics survey with numerical simulations of the heat transfer in a site for ground source heat pump system is necessary for deploying a shallow geothermal utilization system. Density, specific heat, thermal diffusivity, and thermal conductivity are measured on 91 core samples from a 300 m deep borehole in KIGAM(Korea Institute of Geoscience and Mineral Resources). The heat flow is estimated from the thermal gradient and average thermal conductivity and the correlation between fracture system and hydraulic conductivity is analyzed. From the obtained ground information of the study site the performance of the ground heat pump system can be analyzed with some detailed numerical simulations for seasonal heat pump operation skill and optimal system design techniques.

  • PDF

Analysis of conductive mechanism on self-diagnosis FRP (자기진단 FRP의 도전기구 해석)

  • 임현주;이학용;신순기;이준희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.27-30
    • /
    • 2003
  • In order to apply fracture detection we fabricated the CP-FRP using carbon-powder and analyzed conductive mechanism of it. The composites showed lower initial resistance as the carbon powder and amount of glass fiber(TEX) was used much more. When those are compared with each other that before and after bending test, the more cracks observed in matrix after bending test. We become to know that the conductivity of the composites depends on percolation structure of carbon powder.

  • PDF

Evaluation of Mechanical Properties and Resistance to Thermal Shock of YBCO-Ag Superconductors (YBCO-Ag 초전도체의 기계적 성질 및 열충격 내성에 대한 평가)

  • 주진호
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • We have evaluated the role of Ag additions on the strength, fracture toughness, elastic modulus and resistance to thermal shock of $YBa_2Cu_3O_{7-x}$(YBCO) superconductor. Addition of 10 vol.% Ag improved strength and fracture toughness, whereas, decreased elastic modulus of YBCO. In addition, YBCO-Ag composites improved resistance to thermal shock probably due to enhanced strength, fracture toughness and thermal conductivity as a result of Ag addition. It is to be noted that YBCO-Ag made by mixing with $AgNO_3$ solution showed slightly higher strength, fracture toughness and resistance to thermal shock, compared to that made by mixing with metallic Ag powder. These improvements are believed to be due to the microstructure of more finely and uniformly distributed Ag particles.

  • PDF

Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium (등연속체매질로서의 화강암지역의 유효수리전도도 산출)

  • 김경수;김천수;배대석
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.319-332
    • /
    • 2002
  • This study is focused on the characterization of an effective hydraulic conductivity in each hydrogeologic unit assumed as an equivalent continuum medium in the granitic area. Four boreholes of 3" diameter were installed and a Multi-packer system was facilitated in the selected borehole. Various in-situ tests including the fracture logging, constant injection and fall-off tests, slug and pulse tests were carried out. A hydrogeologic unit was defined into the upper and lower zones based on the variation of fracture properties and hydraulic conductivities. The difference of the result obtained by the various hydraulic tests and the effective characterization techniques on rock mass permeability are also discussed. The effective hydraulic conductivity of the upper unit was measured by two times(5.27E-10 m/s~7.57E-10 m/s) that of the lower unit(2.45E-10 m/s~6.81E-10 m/s)through the constant injection and fall-off tests.