Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium

등연속체매질로서의 화강암지역의 유효수리전도도 산출

  • Published : 2002.09.01

Abstract

This study is focused on the characterization of an effective hydraulic conductivity in each hydrogeologic unit assumed as an equivalent continuum medium in the granitic area. Four boreholes of 3" diameter were installed and a Multi-packer system was facilitated in the selected borehole. Various in-situ tests including the fracture logging, constant injection and fall-off tests, slug and pulse tests were carried out. A hydrogeologic unit was defined into the upper and lower zones based on the variation of fracture properties and hydraulic conductivities. The difference of the result obtained by the various hydraulic tests and the effective characterization techniques on rock mass permeability are also discussed. The effective hydraulic conductivity of the upper unit was measured by two times(5.27E-10 m/s~7.57E-10 m/s) that of the lower unit(2.45E-10 m/s~6.81E-10 m/s)through the constant injection and fall-off tests.

본 연구는 화강암이 분포하는 연구지역을 대상으로 수리지질 단위층을 등연속체매질로서 설정하고, 각 단위층의 유효수리전도도를 산출하기 위한 것이다. 이를 위하여 3"직경의 4개 시추공과 다중패커시스템을 설치하였으며, 단열분포특성조사, 정압주입/수위강하시험, 전공 순간충격시험, 그리고 격리구간 내 펄스시험이 수행되었다. 수리지질 단위층을 정의하기 위하여 단열분포특성을 기초로 하여 일차적으로 상하부 단위층의 경계설정을 시도하였고, 수리전도도 변화특성을 이차적인 요소로 대비하였다. 연구에 적용된 수리시험 결과의 차이와 효과적인 암반 투수성 평가방법에 대한 논의도 이루어졌다. 상부 수리지질 단위층의 유효수리전도도는 정압주입/수위강하시험의 경우 5.27E-10 m/s~7.57E-10 m/s의 범위를 가지며, 하부 영역에서는 2.45E-10 m/s~6.81E-10 m/s의 범위를 갖는다.

Keywords

References

  1. KAERI/TR-1817/2001 고성 및 유성지역 중생대 화강암의 단열체계 분포특성 김경수;배대석;김천수;박병윤;고용권
  2. 한국지질도 대전도폭 (1:50,000) 및 도폭설명서 이상만;김형식;나기창
  3. 지질공학 v.11 no.1 순간충격시험에 의한 화강암지역의 수리적 매개변수 산출 함세영;김문수;성익환;이병대;김광성
  4. SKB Technical Report Hydraulic testing in crystalline rock, A comparative study of single-hole text methods Almen, K.E.;Ansersson, J.E.;Carlsson, L.;Hansson, K.;Larsson, N. A.
  5. SKB Technical Report Evaluation of single-hole hydraulic tests in fractured crystalline rock by stedy-state and transient methods Andersson, J.E.;Persson, O.
  6. Water Resour. Res. v.12 no.2 A slug test for determining hydraulic conductivity of unconfined aquifers with completely of partially penetrating wells Bouwer, H.;Rice, R.C. https://doi.org/10.1029/WR012i003p00423
  7. Proc. of the XXIVth Conf. Int. Ass. of Hydrogeologist, Hydrogeology of Hard Rocks Verification of large scale permeability tests in hard rocks Broch, E.;Kjorhoilt, H.
  8. Proc. ISRM Rock Joint Conf., Scale Effects in Rock Masses Scale effects in the determination of hydraulic properties of rock masses Carlsson, A.;Gustafson, G.;Lindblom, U.;Olsson, T.;Pinto da cunha(ed.)
  9. Water Resour. Res. v.15 no.1 Models of groundwater flow in statistically homogeneous porous formations Dagan, G. https://doi.org/10.1029/WR015i001p00047
  10. Water Resour. Res. v.11 no.5 A stochastic conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media Freeze, R.A. https://doi.org/10.1029/WR011i005p00725
  11. FracMan-Interactive Discrete Feature Data Analysis, Geometric Modeling, and Exploration Simulation (version 2.306) Golder Assoc. Inc.
  12. Proc. Nordic Hydrological Conf. Prediction of gross permeability of fractured crystalline rock Gustafson, G.
  13. Proc. of 3rd World pet.;The Hagul Pressure buildup in wells Horner, D.R.
  14. U.S. Army Corps of Engineers Waterway Experimentation Station, Bulletin Time lag and soil permeability in groundwater observations Hvorslev, M.J.
  15. Trans., Institution of Eng., Australia, .CE v.9 no.1 Diamond drilling for founddation exploration, Cilvil Eng Moye, D.G.
  16. Geotechnique v.15 Source of error in joint surveys Terzaghi, R. https://doi.org/10.1680/geot.1965.15.3.287