• Title/Summary/Keyword: Fractography analysis

Search Result 70, Processing Time 0.02 seconds

Integrity Evaluation of Bogie Frame by Ultrasonic Fractography Analysis (초음파 파면해석에 의한 대차 프레임의 건전성 평가)

  • 윤인식;권성태;선종성;명노종;정우현;손태순;김경국;김순철
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2000
  • This study proposes the integrity evaluation of the bogie frame using ultrasonic fractography analysis. Analysis objectives in this study are to investigate fracture planes of damaged zone by the A-scan method. The surface condition of fracture planes shows degree of degradation by the stress concentration. The detection of the natural defects in the bogie frame is performed using the characteristics of echodynamic pattern in ultrasonic signal. Results of ultrasonic testing agree fairly well with those of actual fracture plane. In quantitative fractography analysis, microstructures of actual fracture plane turned out to be intergranular and transgranular fracture. Proposed ultrasonic fractography analysis in this study can be used for the integrity evaluation of the bogie frame.

  • PDF

Integrity evaluations of bogie frame using ultrasonic-fractography analysis (초음파-파면해석에 의한 대차 프레임의 건전성 평가)

  • 윤인식;권성태;정우현;박덕신;김경국
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.461-467
    • /
    • 2000
  • This study proposes the integrity evaluation of bogie frame using ultrasonic waves-fractography analysis. Analysis objectives in this study are to investigate fracture planes of damaged zone by the A-scan method. The surface condition of fracture plane shows degree of degradation by stress concentration. The detection of the natural defects in bogie frame is performed using the characteristics of echodynamic pattern in ultrasonic signal. Results of ultrasonic testing agree fairly well with those of actual fracture plane. In quantitative fractography analysis, microstructures of actual fracture plane turned out to be intergranular and transgranular fracture, Proposed ultrasonic-fractography analysis in this study can be used for the integrity evaluation of the bogie frame

  • PDF

Fracture Behavior of Pressure Tube Materials Based on Fractography (금속재료의 재료시험법 교과내용 개선을 위한 Fractography 신개념 소개 및 도입에 대한 연구)

  • Oh, Dong-Joon
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.126-134
    • /
    • 2010
  • Material Testing Method subject of Metal Materials, which is one of curriculum of engineering major high school, is not properly updated even though both science and technology are advancing rapidly. Especially, the need of fractographic technique, which can analyze the fracture surface with the advanced testing equipment and technique, is increasing. The importance and the analyzing method of Fractography are proved by the characteristic analysis of pressure tube fracture surface of HWPR. In the future, in order to increase the professional knowledge and their pride of engineering major high school student, these advanced subject should be included in the new crriculum of engineering major high school. This activity to involve the advanced subject should be carried out voluntary by the first line teacher before the responsible body.

  • PDF

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선의 프랙토그래피에 관한 연구)

  • 김성웅;이동우;홍순혁;조석수;주원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.778-783
    • /
    • 2001
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means for seeking cause of fracture and has been widely employed. In the X-ray fractography, plastic deformation and residual stress near the fracture surface can by determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the load applied to actual broken turbine blade was predicted.

  • PDF

A Study on the Measurement of Plastic Zone Depth using TRIZ (창의적 문제해결 이론을 이용한 소성역깊이 측정에 관한 연구)

  • Lee, Dong-Woo;Joo, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • Machine parts subjected to fluctuating or cyclic loads induce repeated stresses that often result in failure by fatigue. In such cases, the fatigue failures unfortunately sometimes occur. These may arise from a lack of knowledge with regard to the design, fabrication and operation of the machines or structures. The failure analysis provides valuable information regarding the prevention of similar failures. Furthermore, this information will be useful to improve or to develop new products. Failure stress analysis is classified into X-ray fractography. X-ray fractography has the limited applications because of material crystal size, difficult measurement method, electrolytic polishing precision, and long test time. Therefore, this study proposed the new method to improve the measurement precision of plastic zone depth and test time using TRIZ.

  • PDF

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선 프랙토그래픽에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means far seeking cause of fracture and has been widely employed. In the X-ray frctography, plastic deformation and residual stress near the fracture surface can be determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the stress intensity factor to actual broken turbine blade was predicted.

FRACTURE TOUGHNESS OF VARIOUS CORE MATERIALS

  • Lee Shin-Won;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.682-697
    • /
    • 2001
  • This investigation evaluated the fracture toughness($K_{IC}$) of eight currently available core materials, and relate the fracture toughness value to fractography analysis and surface characteristics using a atomic force microscope (AFM). Single-edge notched (SEN) test specimens (n=10) and compact tension (CT) test specimens (n=10) were prepared conforming to the ASTM Standard E-399 for a high copper amalgam, three composite core materials (Core-Max II, Core Paste, Bisfil Core), two reinforced composite core materials (Ti-Core, Ti-Core Natural), a resin-modified glass ionomer core material (Vitremer), and a conventional glass ionomer core material (Ketac-Molar). The specimens were tested with an Instron Universal Testing Machine. The maximum loads were measured to calculate the fracture toughness ($K_{IC}$). Thereafter, fracture surfaces of SEN specimens of each material were investigated for fractography analysis using scanning electron microscope. And, disc-shaped specimens with 1mm thickness were fabricated for each material and were investigated under AFM for surface morphology analysis. The results were as follows: 1. Bisfil Core showed the highest mean fracture toughness regardless of test methods. 2. For the tooth-colored materials, Ti-Core Natural exhibited the highest fracture toughness. 3. Ketac Molar showed a significantly low fracture toughness when compared with the amalgam and the composite resin core materials(p<0.05). 4. The fracture toughness values obtained with the single-edge notched test, except Ketac Molar, were higher than those obtained in the compact tension test. 5. SEM revealed that the fracture surface of high fracture toughness material was rougher than that of low fracture toughness material. 6. AFM revealed that the surface particles of the composite resins were smaller in size, with a lower surface roughness than the glass ionomer core materials.

  • PDF

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

A Study on the Elasto-Plastic Fracture Toughness $J_IC$ Evaluation of Carbon Steel (탄소강의 탄소성파괴인성 $J_IC$ 평가에 관한 연구)

  • Kim, Hei-Song;Ahn, Byoung-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.90-99
    • /
    • 1989
  • In this study, J-integral values obtained by various methods, i.e, R-Curve, Unloading Compliance, Strectched Zone Width [SZW], and Acoustic Emission [AE] methods are investigated. Elasto-plastic fracture toughness [$J_IC$] estimations by R-curve method are overestimated than those by SZW method, and those by unloading compliance method is around middle value of them. And the difference between them is little. The $J_IC$ value by AE method was almost agreed with that by SZW, and then proved to be useful. Crack propagation mechanism on fractography is a stable ductile fracture. For the identification of ductile fracture, both fractography analysis and AE method were applied to estimate the characteristics more precisely.

  • PDF