• Title/Summary/Keyword: Fractions as quotients

Search Result 3, Processing Time 0.015 seconds

Sixth Grade Students' Understanding on Unit as a Foundation of Multiple Interpretations of Fractions (분수의 다양한 의미에서 단위에 대한 초등학교 6학년 학생들의 이해 실태 조사)

  • Lee, Ji-Young;Pang, JeongSuk
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.1
    • /
    • pp.83-102
    • /
    • 2014
  • The purpose of this study was to explore students' understanding on units embedded in multiple interpretations of fractions: (a) part-whole relationships, (b) measures, (c) quotients, (d) ratios, and (e) operators. A total of 150 sixth graders in elementary schools were surveyed by a questionnaire comprised of 20 tasks in relation to multiple interpretations of fractions. As results, students' performance on units varied depending on the interpretations of fractions. Students had a tendency to regard the given whole as the unit, which led to incorrect answers. This study suggests that students should have rich experience to identify and operate various units in the context of multiple fractions.

  • PDF

A NOTE ON CONTINUED FRACTIONS WITH SEQUENCES OF PARTIAL QUOTIENTS OVER THE FIELD OF FORMAL POWER SERIES

  • Hu, Xuehai;Shen, Luming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.875-883
    • /
    • 2012
  • Let $\mathbb{F}_q$ be a finite field with q elements and $\mathbb{F}_q((X^{-1}))$ be the field of all formal Laurent series with coefficients lying in $\mathbb{F}_q$. This paper concerns with the size of the set of points $x{\in}\mathbb{F}_q((X^{-1}))$ with their partial quotients $A_n(x)$ both lying in a given subset $\mathbb{B}$ of polynomials in $\mathbb{F}_q[X]$ ($\mathbb{F}_q[X]$ denotes the ring of polynomials with coefficients in $\mathbb{F}_q$) and deg $A_n(x)$ tends to infinity at least with some given speed. Write $E_{\mathbb{B}}=\{x:A_n(x){\in}\mathbb{B},\;deg\;A_n(x){\rightarrow}{\infty}\;as\;n{\rightarrow}{\infty}\}$. It was shown in [8] that the Hausdorff dimension of $E_{\mathbb{B}}$ is inf{$s:{\sum}_{b{\in}\mathbb{B}}(q^{-2\;deg\;b})^s$ < ${\infty}$}. In this note, we will show that the above result is sharp. Moreover, we also attempt to give conditions under which the above dimensional formula still valid if we require the given speed of deg $A_n(x)$ tends to infinity.

The Type of Fractional Quotient and Consequential Development of Children's Quotient Subconcept of Rational Numbers (분수 몫의 형태에 따른 아동들의 분수꼴 몫 개념의 발달)

  • Kim, Ah-Young
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.53-68
    • /
    • 2012
  • This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.

  • PDF