• Title/Summary/Keyword: Fractal Analysis

Search Result 331, Processing Time 0.033 seconds

Chaotic Analysis of Water Balance Equation (물수지 방정식의 카오스적 분석)

  • 이재수
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 1994
  • Basic theory of fractal dimension is introduced and performed for the generated time series using the water balance model. The water balance equation over a large area is analyzed at seasonal time scales. In the generation and modification of mesoscale circulation local recycling of precipitation and dynamic effects of soil moisture are explicitly included. Time delay is incorporated in the analysis. Depending on the parameter values, the system showed different senarios in the evolution such as fixed point, limit cycle, and chaotic types of behavior. The stochastic behavior of the generated time series is due to deterministic chaos which arises from a nonlinear dynamic system with a limited number of equations whose trajectories are highly sensitive to initial conditions. The presence of noise arose from the characterization of the incoming precipitation, destroys the organized structure of the attractor. The existence of the attractor although noise is present is very important to the short-term prediction of the evolution. The implications of this nonlinear dynamics are important for the interpretation and modeling of hydrologic records and phenomena.

  • PDF

Assessing the effect of stylus tip radius on surface roughness measurement by accumulation spectral analysis

  • Kwon Ki-Hwan;Cho Nahm-Gyoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • A spectral analysis and numerical simulation are employed to assess the effects of the stylus tip radius on measuring surface profiles. Original profiles with fractal spectral densities are generated and then are numerically traced with circular tipped stylus. Instead of their spectral densities, the accumulative power spectrums of traced profiles are analyzed. It is shown that the minimum wavelength of traced profile relates directly to the radius r of the stylus tip and the root-mean-square (rms) roughness ${\sigma}_o$ of original profile. From this accumulation spectral analysis, a formula is developed to estimate the minimum wavelength of traced profile. By using the concept of the minimum wavelength, an appropriate stylus tip radius can be chosen for the given rms roughness ${\sigma}_o$ of the profile.

Urban Environment change detection through landscape indices derived from Landsat TM data

  • Iisaka, Joji
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.696-701
    • /
    • 2002
  • This paper describes some results of change detection in Tokyo metropolitan area, Japan , using the Landsat TM data, and methods to quantify the ground cover classes. The changes are analyzed using the measures of not only conventional spectral classes but also a set of landscape indices to describe spatial properties of ground cove types using fractal dimension of objects, entropy in the specific windows defining the neighbors of focusing locations. In order eliminate the seasonal radiometric effects on TM data, an automated class labeling method is also attempted. Urban areas are also delineated automatically by defining the boundaries of the urban area. These procedures for urban change detection were implemented by the unified image computing methods proposed by the author, they can be automated in coherent and systematic ways, and it is anticipated to automate the whole procedures. The results of this analysis suggest that Tokyo metropolitan area was extended to the suburban areas along the new transportation networks and the high density area of Tokyo were also very much extended during the period between 1985 and 1995.

  • PDF

Chaotic analysis of tool wear using multi-sensor signal in end-milling process (엔드밀가공시 복합계측 신호를 이용한 공구 마멸의 카오스적 해석)

  • Kim, J.S.;Kang, M.C.;Ku, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.93-101
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and control system, which were hitherto based on linear models. Theory of chaos which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end milling process. Then, it will be verified that cutting force is low-dimensional chaos by calculating Lyapunov exponents. Fractal dimension, embedding dimension. And it will be investigated that the relation between characteristic parameter calculated from sensor signal and tool wear.

  • PDF

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension (특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색)

  • 이정봉;박장춘
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.173-186
    • /
    • 2004
  • This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.

  • PDF

A Syudy on the Detection of High Impedance Faults using Wavelet Transforms and Neural Network (웨이브렛 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구)

  • 홍대승;배영철;전상영;임화영
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.459-462
    • /
    • 2000
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device operating. so it is well hon that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents detections in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. Wavelet transform analysis is applied the time-scale information to fault signal. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

A Study on Extracting Characteristics of High Impedance Fault-Current Based on Chaotic Analysis. (카오스 해석에 기초한 고저항 고장전류의 특징 추출에 관한 연구)

  • 배영철;고재호;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.379-388
    • /
    • 2000
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents, which represent geometrical self-similarity are calculated. In addition, qualitative analysis such as phase planes, Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1101-1121
    • /
    • 2008
  • One proposes an approach to fractional Fourier's transform, or Fourier's transform of fractional order, which applies to functions which are fractional differentiable but are not necessarily differentiable, in such a manner that they cannot be analyzed by using the so-called Caputo-Djrbashian fractional derivative. Firstly, as a preliminary, one defines fractional sine and cosine functions, therefore one obtains Fourier's series of fractional order. Then one defines the fractional Fourier's transform. The main properties of this fractal transformation are exhibited, the Parseval equation is obtained as well as the fractional Fourier inversion theorem. The prospect of application for this new tool is the spectral density analysis of signals, in signal processing, and the analysis of some partial differential equations of fractional order.

  • PDF

A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method (구간해석방법을 통한 새로운 비구형 입자성장해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF