• Title/Summary/Keyword: FoxP3

Search Result 34, Processing Time 0.022 seconds

Vaccines against periodontitis: a forward-looking review

  • Choi, Jeom-Il;Seymour, Gregory J.
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.4
    • /
    • pp.153-163
    • /
    • 2010
  • Periodontal disease, as a polymicrobial disease, is globally endemic as well as being a global epidemic. It is the leading cause for tooth loss in the adult population and has been positively related to life-threatening systemic diseases such as atherosclerosis and diabetes. As a result, it is clear that more sophisticated therapeutic modalities need to be developed, which may include vaccines. Up to now, however, no periodontal vaccine trial has been successful in satisfying all the requirements; to prevent the colonization of a multiple pathogenic biofilm in the subgingival area, to elicit a high level of effector molecules such as immunoglobulin sufficient to opsonize and phagocytose the invading organisms, to suppress the induced alveolar bone loss, or to stimulate helper T-cell polarization that exerts cytokine functions optimal for protection against bacteria and tissue destruction. This article reviews all the vaccine trials so as to construct a more sophisticated strategy which may be relevant in the future. As an innovative strategy to circumvent these barriers, vaccine trials to stimulate antigen-specific T-cells polarized toward helper T-cells with a regulatory phenotype (Tregs, $CD_{4+}$, $CD_{25+}$, $FoxP_{3+}$) have also been introduced. Targeting not only a single pathogen, but polymicrobial organisms, and targeting not only periodontal disease, but also periodontal disease-triggered systemic disease could be a feasible goal.

Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

  • Kim, Chang H.;Park, Jeongho;Kim, Myunghoo
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.277-288
    • /
    • 2014
  • T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

Interleukin-10-Producing B Cells Help Suppress Ovariectomy-Mediated Osteoporosis

  • Yuhua Wang;Wei Zhang;Seong-Min Lim;Li Xu;Jun-O Jin
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.50.1-50.11
    • /
    • 2020
  • Osteoporosis is prevalent in elderly women and it may cause dental implant failure. In particular, estrogen deficiency in postmenopausal women leads to higher rates of osteoporosis prevalence. Immune cell-mediated effects involving the development of osteoporosis have been studied previously; however, the role of IL-10-producing regulatory B (B10) cells in osteoporosis is largely unclear. Here, we examined the role of B10 cells in osteoporosis. C57BL/6 mice were subjected to ovariectomy (OVX). Fifteen weeks after OVX surgery, the first molar of the right maxillary was extracted, and twenty-four weeks after OVX surgery, serous progression of osteoporosis was observed in the alveolar bone. Moreover, the proportion of CD19+CD5+CD1dhigh regulatory B cells, B10, and CD4+CD25+FoxP3+ regulatory T cells from the spleen of OVX mice decreased during the progression of osteoporosis, compared to controls. In contrast to regulatory cells, IL-17-producing Th (Th17) cell levels were increased in OVX mice. Adoptive transfer of B10 cells to OVX mice led to a decrease in Th17 cell abundance and inhibited the development of osteoporosis in the alveolar bone from OVX mice. Thus, our results suggest that B10 cells may help suppress osteoporosis development.

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim;Jee Won Kim;Hyerim Choi;Ji-Eun Oh;Tae Hyun Kim;Ga-Yeon Go;Sang-Jin Lee;Gyu-Un Bae
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.726-734
    • /
    • 2023
  • Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

Stock Assessment and Management Implications of Small Yellow Croker in Korean Waters (한국 근해 참조기의 자원평가 및 관리방안)

  • ZHANG Chang Ik;KIM Suam;YOON Seong-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.282-290
    • /
    • 1992
  • Based on surplus production models using fishery data for the last 20 years, a stock assessment was conducted for the small yellow croaker in Korean waters. The maximum sustainable yields (MSY) from the Schaefer and Fox models were estimated to be 37,000 metric tons (mt) and 33,450 mt. Zhang's model using time-series biomass with instantaneous coefficients of fishing mortality (F) and using time-series biomass and catch yielded MSY estimates of 45,328 mt and 40,160 mt, respectively. A yield-per-recruit analysis showed that the current yield per recruit of about 20g with F= 1.11 $yr^{-l}$, where the age at first capture $(t_c)$ is 0.604, was much lower than the maximum possible yield per recruit of 43g. Fixing $t_c$ at the current level and reducing fishing intensity (F) from 1.11 $yr^{-l}$ to 0.4 $yr^{-l}$ yielded only a small increase in predicted yield per recruit, from 20 to 25g. However, estimated yield per recruit increased to 43g by increasing $(t_c)$ from the current age (0.604) to age three with F fixed at the current level. This age at first capture corresponded to the optimal length which was obtained from the $F_{0.1}$ method. According to the analysis of stock recovery strategies employing the Zhang model, the optimum equilibrium biomass $(B^*_{MSY})$ which produces the maximum yield could be achieved after approximately five years at the lower fishing intensity (F=0.5).

  • PDF

Expression of Transcription Factor FOXC2 in Cervical Cancer and Effects of Silencing on Cervical Cancer Cell Proliferation

  • Zheng, Chun-Hua;Quan, Yuan;Li, Yi-Yang;Deng, Wei-Guo;Shao, Wen-Jing;Fu, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1589-1595
    • /
    • 2014
  • Objective: Forkhead box C2 (FOXC2) is a member of the winged helix/forkhead box (Fox) family of transcription factors. It has been suggested to regulate tumor vasculature, growth, invasion and metastasis, although it has not been studied in cervical cancer. Here, we analyzed FOXC2 expression in cervical tissues corresponding to different stages of cervical cancer development and examined its correlation with clinicopathological characteristics. In addition, we examined the effects of targeting FOXC2 on the biological behavior of human cervical cancer cells. Methods: The expression of FOXC2 in normal human cervix, CIN I-III and cervical cancer was examined by immunohistochemistry and compared among the three groups and between cervical cancers with different pathological subtypes. Endogenous expression of FOXC2 was transiently knocked down in human Hela and SiHa cervical cells by siRNA, and cell viability and migration were examined by scratch and CCK8 assays, respectively. Results: In normal cervical tissue the frequency of positive staining was 25% (10/40 cases), with a staining intensity (PI) of $0.297{\pm}0.520$, in CIN was 65% (26/40cases), with a PI of $3.00{\pm}3.29$, and in cancer was 91.8% (68/74 cases), with a PI of $5.568 {\pm}3.449$. The frequency was 100% in adenocarcinoma (5/5 cases) and 91.3% in SCCs (63/69 cases). The FOXC2 positive expression rate was 88.5% in patients with cervical SCC stage I and 100% in stage II, showing significant differences compared with normal cervix and CIN. With age, pathologic differentiation degree and tumor size, FOXC2 expression showed no significant variation. On transient transfection of Hela and SiHa cells, FOXC2-siRNA inhibition rates were 76.2% and 75.7%; CCK8 results showed reduced proliferation and relative migration (in Hela cells from $64.5{\pm}3.16$ to $49.5{\pm}9.24$ and in SiHa cells from $60.1{\pm}3.05$ to $44.3{\pm}3.98$) (P < 0.05). Conclusion: FOXC2 gene expression increases with malignancy, especially with blood vessel hyperplasia and invasion degree. Targeted silencing was associated with reduced cell proliferation as well as invasion potential.

A determination of occlusal plane comparing different levels of the tragus to form ala-tragal line or Camper's line: A photographic study

  • Kumar, Sandeep;Garg, Sandeep;Gupta, Seema
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • PURPOSE. The purpose of this study was to determine accurately the part of the tragus to be used to form the Ala-Tragal line or Camper's line in orthognathic profile patients. MATERIALS AND METHODS. 150 dentate subjects with age of 18-40 years with orthognathic profile were sampled. Life-size lateral digital photographs of the face with fox plane were taken in natural head position. Different angles between Eye-Ear plane and occlusal plane ($OT_1$-OP), Eye-Ear plane and ala-superior border of tragus ($OT_1-AT_1$), Eye-Ear plane and ala-middle border of tragus ($OT_1-AT_2$) and Eye-Ear plane and ala-inferior border of tragus ($OT_1-AT_3$) were calculated using computer software package, AutoCAD 2004. From the three angles formed by the Eye-ear plane ($OT_1$ or FH plane) and the ala-tragal lines, the one closest to the angle formed between Eye-Ear plane ($OT_1$) and occlusal plane (OP) was used to determine the occlusal plane of orientation. The obtained results were subjected to ANOVA F test, Tukey's Honestly significant difference test, followed by Karl Pearson coefficient of correlation test. P values of less than 0.05 were taken as statistically significant. RESULTS. The mean of base line angle i.e. $OT_1$-OP angle ($11.96{\pm}4.36$) was found to be close to $OT_1-AT_2$ angle ($13.67{\pm}1.93$) and $OT_1-AT_3$ angle ($10.31{\pm}2.03$), but $OT_1$-OP angle was found to be more closer to $OT_1-AT_3$ angle. Comparison of mean angles showed that $OT_1$-OP angle in both males (11.68) and females (12.51) is close to $OT_1-AT_3$ angle (males- 11.01, females- 11.95). CONCLUSION. The line joining from ala to the lower border of the tragus was parallel to the occlusal plane in 53.3% of the subjects. There was no influence of the sex on the level of occlusal plane.

Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development

  • Zhaohua Liu;Xiuwen Tan;Qing Jin;Wangtao Zhan;Gang Liu;Xukui Cui;Jianying Wang;Xianfeng Meng;Rongsheng Zhu;Ke Wang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.982-992
    • /
    • 2024
  • Objective: Jining Grey goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey goat and Boer goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding of goats.

Comparison of immune cell populations in bronchoalveolar lavage cells and PBMC cytokine expressions in porcine reproductive and respiratory syndrome and porcine respiratory disease complex

  • Yang, Myeon-Sik;Jeong, Chang-Gi;Nazki, Salik;Mattoo, Sameer ul Salam;Lee, Sang-Myeong;Kim, Won-Il;Kim, Bumseok
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.201-216
    • /
    • 2019
  • Porcine reproductive and respiratory syndrome (PRRS) is characterized by reproductive failure in sows and respiratory distress in all age pigs. Porcine respiratory disease complex (PRDC) is a disease caused by opportunistic bacterial infection secondary to a weakened immune system by a preceding respiratory infection. In this study, we tried to compare the immune responses in PRRS and PRDC groups to clearly characterize the disease severity. Eighty-five pigs were infected with various Korean field PRRS virus strains. Infected animals were classified into PRRS (n=32) and PRDC (n=53) groups based on lung lesions such as interstitial pneumonia, suppurative pneumonia, and pleuropneumonia. The immune cell population of bronchoalveolar lavage cells (BALc) was evaluated on 14 and 28 days post infection (dpi) and PMBC cytokine expression was measured on 0, 3, 7, 14 dpi to investigate early inflammatory reactions. Pulmonary lesion severity was negatively correlated with alveolar macrophage (AM) in both PRRS and PRDC groups on 14 and 28 dpi. AM in BALc was less populated in PRDC group on 28 dpi compared to PRRS group. AM in BALc was significantly less populated in PRDC group on 28 dpi compared to 14 dpi. In addition, cytotoxic T lymphocyte (CTL) in BALc was higher populated in PRDC group on 14 dpi and 28 dpi compared to PRRS group. In the case of PBMC cytokine TNF-α, IFN-α, IL-1β, IFN-γ, FoxP3, and IL-2, the PRRS group showed higher expression than the PRDC group on 7 dpi, 14 dpi, 7 dpi, 14 dpi, 14 dpi, and 14 dpi, respectively. On the other hand, in the case of IFN-β, IL-6, IL-8, IL-4, and IL-17, the PRDC group showed higher PBMC cytokine expression at 14 dpi, 7 dpi, 14 dpi, 3 dpi, and 3 dpi, respectively, than the PRRS group. Based on these results, our study could characterize differential immune responses in pigs with PRRS or PRDC.