• Title/Summary/Keyword: Fourth bending

Search Result 31, Processing Time 0.025 seconds

Characteristics of Linear Ultrasonic Motor Using $L_1-B_4$ Mode Unimorph-TyPe and Bimorph-Type Vibrator ($L_1-B_4$ 모드 유니몰프형과 바이몰프형 진동자를 이용한 선형 초음파 모터의 특성)

  • Kim, Beom-Jin;Jeong, Dong-Seok;Kim, Tae-Yeol;Park, Tae-Gon;Kim, Myeong-Ho;Uchino, Kenji
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.427-433
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, and the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramic element as a driving element. That is,$L_1-B_4$ linear ultrasonic motor can be constructed by a multi-mode vibrator of longitudinal and bending modes. Linear ultrasonic motors are based on an elliptical motion on the surface elastic body, such as bar or plates. In general, the natural resonance frequency of the stator is used as a driving frequency of the motor which provides a large elliptical motion. The corresponding eigenmode of one resonance frequency can be excited twice at the same time with a Phase shift of 90 degrees in space and time. And the rotation can be reversed by changing the phase between the two signals from sin$\omega$t to cos$\omega$t. Moreover, the tangential force pushes the slider(rotor) and, therefore, determines the thrust and speed of the motor. The experimental results of fabrication motors, bimorph-tyPe motor showed more excellent than unimorph-type. The maximum speed of TBL-200, TBL-300, TBL-400, TBL -220, TBL-310 and TBL-420 motors were 0.12, 0.37, 0.39, 0.14, 0.55 and $0.60ms6{-1}$, respectively. And the efficiency were reported 1.15, 7.9, 6.6, 2.36, 10.1 and 16.5%, respectively. That time, output thrust of the motor was a strong(1~2N) and the weight of stator was a lightness(5~7g).

  • PDF

A Study on the Bending Analysis of Rectangular Plates by Substructuring Technique (분할구조기법을 이용한 장방형판의 휨해석에 관한 연구)

  • 오숙경;김성용;김일중;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.65-72
    • /
    • 1997
  • This study is the bending analysis of rectangular plates with 4-sides simply supported by Finite Element Method using substructuring technique. In finite element method, as the more number of finite element, the more dimension of matrix, it is difficult to obtain accuracy solution. In this paper substructuring technique is applied to finite element method in order to reduce the dimension of matrix according to the number of finite element mesh. To validate finite element method using substructuring technique, deflections and moments of rectangular plates by that method is compared with those of references. Considering the symmetry of the plate and load, one fourth of plate is analyzed. Operating time and the error of solutions according to the number of finite element mesh and substructure are compared with each other.

  • PDF

A new finite element based on the strain approach with transverse shear effect

  • Himeur, Mohammed;Benmarce, Abdelaziz;Guenfoud, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.793-810
    • /
    • 2014
  • This research work deals with the development of a new Triangular finite element for the linear analysis of plate bending with transverse shear effect. It is developed in perspective to building shell elements. The displacements field of the element has been developed by the use of the strain-based approach and it is based on the assumed independent functions for the various components of strain insofar as it is allowed by the compatibility equations. Its formulation uses also concepts related to the fourth fictitious node, the static condensation and analytic integration. It is based on the assumptions of tick plate.s theory (Reissner-Mindlin theory). The element possesses three essential external degrees of freedom at each of the four nodes and satisfies the exact representation of the rigid body modes of displacements. As a result of this approach, a new bending plate finite element (Pep43) which is competitive, robust and efficient.

Design and FEM Analysis of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 유한요소 해석)

  • 김태열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.210-215
    • /
    • 1999
  • The standing waves of the fourth bending ode of vibration and the first longitudinal mode of vibration were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theory. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF

Design and Displacement Analysis by ANSYS of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 ANSYS에 의한 변위량해석)

  • 김태열;강도원;김범진;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.300-302
    • /
    • 1999
  • The standing waves of the fourth bending mode of vibration and first longitudinal mode of vibrator were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theoty. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF

FEM Analysis on the Characteristics of Piezoelectric Ceramics Using $L_{1}-B_{4}$ Vibration mode ($L_{1}-B_{4}$ 진동모드를 이용하는 압전 세라믹스의 유한요소 해석)

  • 김범진;정동석;김태열;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.393-397
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramics element as a driving element. That is, L$_1$-B$_4$ linear ultrasonic motor can be constructed using a multi-mode vibrator of longitudinal and bending modes. The simulation with variation of material characteristics of piezoceramic were performed as use of finite element analysis ANSYS 5.5, such as elastic compliance, piezoelectric constant, electro-mechanical coupling coefficient, poisson's ratio and density. The results of simulation, elastic compliance constant s$_{11}$ and piezoelectric constant d$_{31}$ had the most of influence on the elliptic-motion. This results consist with using transverse effect of material. The used motor were piezoceramics of 4 layers, and the dimensions were 65$\times$5$\times$3.5mm(LxWxt).).

  • PDF

Isogeometric Collocation Method to solve the strong form equation of UI-RM Plate Theory

  • Katili, Irwan;Aristio, Ricky;Setyanto, Samuel Budhi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • This work presents the formulation of the isogeometric collocation method to solve the strong form equation of a unified and integrated approach of Reissner Mindlin plate theory (UI-RM). In this plate theory model, the total displacement is expressed in terms of bending and shear displacements. Rotations, curvatures, and shear strains are represented as the first, the second, and the third derivatives of the bending displacement, respectively. The proposed formulation is free from shear locking in the Kirchhoff limit and is equally applicable to thin and thick plates. The displacement field is approximated using the B-splines functions, and the strong form equation of the fourth-order is solved using the collocation approach. The convergence properties and accuracy are demonstrated with square plate problems of thin and thick plates with different boundary conditions. Two approaches are used for convergence tests, e.g., increasing the polynomial degree (NELT = 1×1 with p = 4, 5, 6, 7) and increasing the number of element (NELT = 1×1, 2×2, 3×3, 4×4 with p = 4) with the number of control variable (NCV) is used as a comparable equivalent variable. Compared with DKMQ element of a 64×64 mesh as the reference for all L/h, the problem analysis with isogeometric collocation on UI-RM plate theory exhibits satisfying results.

Inelastic Buckling Behavior of Simply Supported I-Beam under Transverse Loading (횡방향 하중을 받는 I형강 단순보의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.155-167
    • /
    • 2004
  • In this paper, the inelastic buckling behavior of the beam under uniform bending was investigated using the energy-based method, which can tackle problems in fourth order eigenvalue. The pattern of residual stress was not available to satisfy the I-sections manufactured in Korea. however; therefore, the well-known polynomial and simplified pattern of residual stress was adopted in this study. The inelastic lateral-distortional buckling behavior of the beam with I-sections manufactured in Korea was investigated. The study was then extended to the inelastic lateral-torsional buckling of the beam by minimizing the out-of-plane web distortion. The inelastic lateral-torsional buckling results obtained in this paper were compared with the prediction of allowable bending stress given in the Korean steel designers' manual (1995). Results showed that the importance of inelastic lateral-distortional buckling did not arise for beams under uniform bending. Likewise, the design method in KSDM (1995) was proven to bo too conservative for intermediate and short spans of beams without intermediate bracing.

Numerical Analysis of Tapered Circular Arch with Fixed Ends (양단고정 변단면 도호아-치의 수치해석에 관한 연구)

  • 박문호;이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.3
    • /
    • pp.4462-4471
    • /
    • 1977
  • The governing differential equations for the tapered circular arch with fixed ends have been derived, and a numerical procedure for the solution of these equations have been developed. The governing differential equations were solved numerically by an initial value integration procedure and Shooting Methods for boundary value problems. The Rungekutta fourth order integration technique was used. The methods was programmed for a Cyber 73-18 computer System, and all esults were obtained on this computer. A detailed study has been made for a fixed arch with an angle of opening equal to 0.7 radian, and the results are presented in detail in tables and curves. It is hoped that the results presented herein is applied to the deformations of gives point from the tri-axial direction of tapered circular arch with fixed ends, bending moment, and torsional moment, and that at the same time results to be used for archwise structures in steel structure.

  • PDF

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.