• 제목/요약/키워드: Fourier optics and signal processing

검색결과 5건 처리시간 0.018초

더해지는 기준신호를 이용한 위성복원: I. 이론 (Phase Retrieval Using an Additive Reference Signal: I. Theory)

  • Woo Shik Kim
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.26-33
    • /
    • 1994
  • Phase retrieval is concerned with the reconstruction of a signal from its Fourier transform magnitude (or intensity), which arises in many areas such as X-ray crystallography, optics, astronomy, or digital signal processing. In such areas, the Fourier transform phase of the desired signal is lost while measuring Fourier transform magnitude (F.T.M.). However, if a reference 'signal is added to the desired signal, then, in the Fourier trans form magnitude of the added signal, the Fourier transform phase of the desired signal is encoded. This paper addresses uniqueness and retrieval of the encoded Fourier phase of a multidimensional signal from the Fourier transform magnitude of the added signal along with the Fourier transform magnitude of the desired signal and the information of the additive reference signal. In Part I, several conditions under which the desired signal can be uniquely specified from the two Fourier transform magnitudes and the additive reference signal are presented. In Part II, the development of non-iterative algorithms and an iterative algorithm that may be used to reconstruct the desired signal(s) is considered.

  • PDF

더해지는 기준신호를 이용한 위성복원: II. 복원 (Phase Retrieval Using an Additive Reference Signal: II. Reconstruction)

  • Woo Shik Kim
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.34-41
    • /
    • 1994
  • Phase retrieval is concerned with the reconstruction of a signal from its Fourier transform magnitude (or intensity), which arises in many areas such as X-ray crystallography, optics, astronomy, or digital signal processing In such areas, the Fourier transform phase of the desired signal is lost while measuring Fourier transform magnitude (F.T.M.). However, if a reference 'signal is added to the desired signal, then, in the Fourier trans form magnitude of the added signal, the Fourier transform phase of the desired signal is encoded This paper addresses uniqueness and retrieval of the encoded Fourier phase of a multidimensional signal from the Fourier transform magnitude of the added signal along with Fourier transform magnitude of the desired signal and the information of the additive reference signal In Part I, several conditions under which the desired signal can be uniquely specified from the two Fourier transform magnitudes and the additive reference signal are presented In Part II, the development of non-iterative algorithms and an iterative algorithm that may be used to reconstruct the desired signal (s) is considered

  • PDF

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Background-noise Reduction for Fourier Ptychographic Microscopy Based on an Improved Thresholding Method

  • Hou, Lexin;Wang, Hexin;Wang, Junhua;Xu, Min
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2018
  • Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging method that achieves both high resolution (HR) and wide field of view. In the FPM framework, a series of low-resolution (LR) images at different illumination angles is used for high-resolution image reconstruction. On the basis of previous research, image noise can significantly degrade the FPM reconstruction result. Since the captured LR images contain a lot of dark-field images with low signal-to-noise ratio, it is very important to apply a noise-reduction process to the FPM raw dataset. However, the thresholding method commonly used for the FPM data preprocessing cannot separate signals from background noise effectively. In this work, we propose an improved thresholding method that provides a reliable background-noise threshold for noise reduction. Experimental results show that the proposed method is more efficient and robust than the conventional thresholding method.

디지털 홀로그래피를 이용한 one-time pattern 상호 인증 방법 (One-time Pattern Mutual Authentication Method by using Digital Holography)

  • 길상근
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.291-294
    • /
    • 2016
  • 본 논문은 새로운 광학적 일회용 패턴암호 상호 인증 방법을 제안한다. 이 방법은 2-단계 위상천이 디지털 홀로그래피 기법을 사용하여 이중 인증을 제공하고, 광학적 일회용 패턴암호를 상호 양방향으로 시도-응답 악수 기법을 구현하여 양방향 인증을 수행한다. 클라이언트와 서버는 상호 인증시 일회용 패턴암호를 무작위 수로 선택하여 오직 한번만 사용하고 이를 암호화하여 전송하기 때문에, 되풀이 공격이나 중간자 공격과 같은 암호공격으로부터 암호시스템을 보호하고 보안수준을 한층 더 높일 수 있다.