• Title/Summary/Keyword: Fourier 변환

Search Result 898, Processing Time 0.023 seconds

Adaptive Short-time Fourier Transform for Guided-wave Analysis (유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환)

  • Hong, Jin-Chul;Sun, Kyung-Ho;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.266-271
    • /
    • 2005
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the present method, the flexural wave signals measured in a plate were analyzed.

Time Dependent Fourier Transform, Time Dependent Spectrum Density 및 그의 응용

  • 안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 1976
  • Spectrum의 시간기복을 나타내는 시간 및 주파수의 함수 F(w,t,T) 및 W(w,t,T)를 정의하였고, 실례에 적용시켰다. Fourier변환을 f(t)와 Phasor ejwt와의 Correlation으로 정의하였고 그 변환시분이 시간마다의 성분의 합계이어서 t 시각에서의 Spectrum을 그 근거에서의 f(t)값에만 의함을 증명하였다. Two new time functions defining Time Dependent Fourier Transform F(w,t,T) and Time Dependent Spectrum Density W(w,t,T) are deduced. courier transform is defined as the correlation between the time function f(t) and phasor ejwt. Several theorems corncerning the new functions are proved in order to verify the instantaneous cause a effet of the function f(t) and the nuctuating spectrum.

  • PDF

Robust Damage Diagnostic Method Using Short Time Fourier Transform and Beating (단시간 푸리에 변환과 맥놀이를 이용한 강건한 결함 진단법)

  • Lee, Ho-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1108-1117
    • /
    • 2005
  • A robust damage detection method using short-time Fourier transform and beating phenomena is presented as an estimating tool of the healthiness of large structures. The present technique makes use of beating phenomena that manifest themselves when two signals of similar frequencies are added or subtracted. Unlike most existing methods based on vibration signals, the present approach does not require an analytic model for target structures. Furthermore, the main advantage of the proposed method compared to the competing diagnostic method using vibration data is its robustness. The proposed method is not affected by the amplitude of exciting signals and the location of exciting points. From a measuring view point. the location of sensing point have no influence on the performance of the present method. With a view to verifying the effectiveness of this method. a series of experiments are made and the results show its possibility as a robust damage diagnostic method.

Adaptive Short-time Fourier Transform for Guided-wave Analysis (유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환)

  • Sun, Kyung-Ho;Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.606-610
    • /
    • 2004
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the proposed method, the flexural wave signals measured in a plate were analyzed.

  • PDF

Fourier transform method of surface topography and interferometry (푸리에 변환을 이용한 파면위상의 복구)

  • 남기봉
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 1992
  • The fourier transform method of retrieving the phase of the test wavefront from a Twyman-Green interferometer was reviewed by numerical simulations and experiments. Of the two methods reviewed, Takeda's approach proved more reliable in reconstructing the deformation of the test surface. The application of this approach to a plane mirror showed the existence of the surface curvature, whose maximum deviation was about $\lambda$/6. The accuracy in the measurement was evaluated to be around $\lambda$/40.

  • PDF

The Improvement of Motion Compensation for a Moving Target Using the Gabor Wavelet Transform (Gabor Wavelet Transform을 이용한 움직이는 표적에 대한 움직임 보상 개선)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.913-919
    • /
    • 2006
  • This paper presents a technique for motion compensation of ISAR(Inverse SAR) images for a moving target. If a simple fourier transform is employed to obtain ISAR image for a moving target, the image is usually blurred. These images blurring problem can be solved with the time-frequency transform. In this paper, motion compensation algorithms of ISAR image such as STFT(Short Time Fourier Transform), GWT(Gabor Wavelet Transform) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and simulated MIG-25 to obtain motion compensated ISAR image, and display the resolution of STFT and GWT ISAR image.

Design of the fast adaptive digital filter for canceling the noise in the frequency domain (주파수 영역에서 잡음 제거를 위한 고속 적응 디지털 필터 설계)

  • 이재경;윤달환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the high speed noise reduction processing system using the modified discrete fourier transform(MDFT) on the frequency domain. The proposed filter uses the linear prediction coefficients of the adaptive line enhance(ALE) method based on the Sign algorithm The signals with a random noise tracking performance are examined through computer simulations. It is confirmed that the fast adaptive digital filter is realized by the high speed adaptive noise reduction(HANR) algorithm with rapid convergence on the frequency domain(FD).

Analysis method for the Measured Track Geometry Data using Wavelet Transform (웨이브렛 변환을 이용한 궤도틀림 분석)

  • Lee, In-Kyu;Kim, Sung-Il;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.187-192
    • /
    • 2006
  • The regularity of railway track alignment is a crucial component fur maintaining travel safety and the smoothness of passenger ride. The conventional spectral analysis has been considered to estimate the severity of the track irregularity from measured data. The time domain data used to be changed into the frequency domain by Fourier transform. Because the measuring points can be regarded as the time points, the spatial-frequency can be introduced instead of the time-frequency. Although FFT(Fast Fourier Transform) and/or PSD(Power Spectral Density) function could provide fairly localized information within frequency domain, but chronical configurations of data could be missed. In this study, we attempt to apply the Morlet wavelet transform for the purpose of a frequency-time-domain analysis rather than a frequency-domain analysis. The applicability of wavelet transform is examined for the estimation of the track irregularity with real measured track data on the section of Kyoung-bu line by EM-120 measuring vehicle. It is shown that the wavelet transform can be an effective tool to manage the track irregularity.

Planar integrated optics for implementation of fractional fourier transform (분수차 퓨리에 변환을 위한 평판집적 광학계 구현)

  • 박선택;김필수;오차환;송석호
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • We have implemented a planar integrated optics for the fractional Fourier transform (FRT) which has recently been developed as a generalized form of the conventional Fourier transform. FRT optical systems provide versatile tools for analyzing signals and designing hardwares, but require high accuracy and stability in the arrangement of optical components because of their shift-variant characteristic. The planar optical FRT setup composed of free-space optical components integrated on a single glass block makes the FRT of 2-dimensional(2-D) input patterns through the 3-D glass-space. Therefore, taking advantage of the compactness, easy alignment and thermal/mechanical stability, the planar optics can provide a useful approach to realizing an optical fractional correlation system in a practical way. In the experiment, we have obtained accurate FRT results by using the planar integrated optics with 4 different fractional orders of 0.25, 0.5, 0.75, and 1.0.

  • PDF

Video Based Face Spoofing Detection Using Fourier Transform and Dense-SIFT (푸리에 변환과 Dense-SIFT를 이용한 비디오 기반 Face Spoofing 검출)

  • Han, Hotaek;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.483-486
    • /
    • 2015
  • Security systems that use face recognition are vulnerable to spoofing attacks where unauthorized individuals use a photo or video of authorized users. In this work, we propose a method to detect a face spoofing attack with a video of an authorized person. The proposed method uses three sequential frames in the video to extract features by using Fourier Transform and Dense-SIFT filter. Then, classification is completed with a Support Vector Machine (SVM). Experimental results with a database of 200 valid and 200 spoof video clips showed 99% detection accuracy. The proposed method uses simplified features that require fewer memory and computational overhead while showing a high spoofing detection accuracy.