• Title/Summary/Keyword: Four-point bending - fatigue test

Search Result 19, Processing Time 0.026 seconds

High Temperature Design Criteria of Cordierite Ceramic Substrate in Four-point Banding (4점 굽힘시험에서 코디어라이트 세라믹 담체의 고온설계기준)

  • Baek, Seok-Heum;Park, Jea-Sung;Choi, Hyun-Jin;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.173-174
    • /
    • 2008
  • The four-point bending test is a widely used method to determine material parameters. The aim of the present study was to evaluate the flexural strength (or modulus of rupture) and the Weibull modulus of cordierite ceramic substrate by means of four-point bending tests. The strength data from experiments followed Weibull statistics. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near $200^{\circ}$. At temperatures well above $200^{\circ}C$ the available design strength can be as high as 65% as substrate's initial strength.

  • PDF

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Effects of Stitching Thread on Fatigue Characteristics of Polyurethane foam Cored Sandwich Structure (우레탄 폼 코아 샌드위치 구조물의 피로특성에 미치는 스티칭 사의 영향)

  • 김재훈;이영신;박병준;김영기;김덕회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.71-75
    • /
    • 2000
  • The effects of stitching thread on fatigue characteristics of polyurethane foam cored sandwich structures are investigated. Fatigue test and static test, being used in four point bending test, are performed with various diameters and distances of stitching thread. The Results show that the maximum load for bending tests is similar to each other, but after $1O^6$ fatigue cycles, the stiffness degradation of the stitching thread diameter $\emptyset$ 3mm specimen is a much larger than that of the $\emptyset$ 5mm specimen.

  • PDF

The Elastic Moduli and Fatigue Properties of Canine Trabecular Bone Tissue

  • Park, Kuiwon;Gon Khang;Steven A. Goldstein
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1022-1031
    • /
    • 2001
  • The elastic modulus and fatigue properties of canine and human trabecular bone tissues (single trabecular) were experimentally determined on a microstructural level using four-point bending cyclic test, and they were compared based on microstructural characteristics and mineral density. The results showed that canine trabecular bone tissue had significantly lower modulus and lower fatigue strength than human tissue. The observed microstructural differences between the two tissues may be more responsible for the differences, although the lower mineral density in canine tissue might also have contributed to the lower modulus and fatigue strength.

  • PDF

A Study on Fatigue Characteristics and Economic Analysis of Discharged Nylon Fiber-Reinforced Asphalt Concrete (폐나일론을 이용한 섬유보강 아스팔트 콘크리트의 피로특성 및 경제성 분석)

  • Baek, Ingyu;Park, Kisun;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.476-483
    • /
    • 2013
  • In this study, discharged nylon fibers were added to asphalt concretes to be compared with fatigue life and analyzed in economic point of view. A four point bending fatigue test was conducted, and as a result, nylon fiber reinforced asphalt concretes that showed a 10percent increase in fatigue life compared to ordinary asphalt concrete. The economic analysis confirmed that the maintenance cost was decreased by 540 million won throughout the analyzing period. It is thought discharged nylon fiber reinforced asphalt will cause more economic and social effects than was shown by life cycle cost analysis.

Investigation of Bending Fatigue Behaviors of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 굽힘 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.40-44
    • /
    • 2015
  • The fatigue behavior of thermal butt fusion in safety class III high-density polyethylene (HDPE) buried piping for nuclear power plants was investigated using load-controlled bending fatigue on four-point bend test specimens. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low- and medium-cycle fatigue regions while having a negligible effect in the high-cycle fatigue regions.

Development of Reliability Design Technique and Life Prediction Model for Electronic Components (취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF

Electrohydrodynamic 젯 프린팅 시스템을 이용한 Graphene 기반 Graphene/Ag-grid 하이브리드 투명 전극의 특성연구

  • Park, Ha-Nul;Jo, Da-Yeong;Lee, Hye-Min;Seo, Gi-Won;Kim, Hyo-Jung;Lee, Yeong-U;Kim, Ji-Hun;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.1-185.1
    • /
    • 2014
  • 본 연구에서는 Electrohydrodynamic (EHD) 젯 프린팅 시스템을 이용하여 graphene이 올려져 있는 유연성 있는 PET 기판 위에 Ag 용액을 그리드로 간격에 따라 타진하였다. Ag 그리드 간격을 200 um, 300 um, 400 um, 500 um로 증가시켰으며, 이때 UV/Vis spectrometry, four-point probe를 이용하여 전기적, 광학적 특성을 분석하였다. Graphene/Ag-grid 하이브리드 투명전극은 그리드 간격 400 um에서 21Ohm/sq.의 면저항과 550 nm에서 84.08%의 투과도를 확인하였다. 또한, graphene/Ag-grid 하이브리드 투명전극의 기계적 응력에 따른 전기적 안정성을 알아보기 위해 radius에 따른 bending, fatigue test와 twist bending, rolling test를 진행하였다. Fatigue bending은 speed 30 mm/s, outer bending radius 20 mm, inner bending radius 22.5 mm로 bending test를 5000번 진행하였으며, twist bending, rolling test를 각각 10000번 진행하였다. 이 결과를 통해 bending-release cycle 조건에서도 초기저항 대비 5% 이내의 매우 우수한 전기적 안정성을 나타냄을 확인하였다. 이러한 graphene/Ag-grid 하이브리드 투명전극의 우수한 특성을 얻음으로써, graphene 박막의 플렉시블 투명전극으로서의 적용가능성을 타진할 수 있었다.

  • PDF

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min;Kim, Seung-Jae;Lee, Hyun-Jae;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3852-3859
    • /
    • 2021
  • This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.