• Title/Summary/Keyword: Four-node plate bending element

Search Result 15, Processing Time 0.022 seconds

Deformation performance analysis of thin plates based on a deformation decomposition method

  • Wang, Dongwei;Liang, Kaixuan;Sun, Panxu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.453-464
    • /
    • 2022
  • Thin plates are the most common spatially stressed members in engineering structures that bear out-of-plane loads. Therefore, it is of great significance to study the deformation performance characteristics of thin plates for structural design. By constructing 12 basic displacement and deformation basis vectors of the four-node square thin plate element, a deformation decomposition method based on the complete orthogonal mechanical basis matrix is proposed in this paper. Based on the deformation decomposition method, the deformation properties of the thin plate can be quantitatively analyzed, and the areas dominated by each basic deformation can be visualized. In addition, the method can not only obtain more deformation information of the structure, but also identify macroscopic basic deformations, such as bending, shear and warping deformations. Finally, the deformation properties of the bidirectional thin plates with different sizes of central holes are analyzed, and the changing rules are obtained.

Elastic Stability of Perforated Concrete Shear Wall (개구부를 갖는 콘크리트 전단벽의 탄성안정)

  • 김준희;김순철
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.251-259
    • /
    • 1998
  • Concrete shear wall with opening is modeled as a rectangular thin plate. The stability analysis results are presented by the buckling coefficient, k, for two different boundary conditions. The other parameters whose variation have been considered are the ratio of the bending induced force to gravity force, a, the ratio of the horizontal shear force to the gravity force ratio, A and the change of location and the size of perforated part. To obtain the results by finite element method, an example plate has been divided into 27*9 square elements. Four node rectangular c.deg. continuous finite elements having three degrees of freedom per each node is adopted. It is generally concluded that the buckling coefficients decrease as the size of hole increases, and the location of hole moves to free edge of the wall.

  • PDF

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.