최근 데이터 예측 방법으로 인공신경망(Artificial Neural Network, ANN)분야에 대한 관심이 높아졌으며, 그 중 시계열 데이터 예측에 특화된 LSTM(Long Short-Term Memory)모형은 수문 시계열자료의 예측방법으로도 활용되고 있다. 본 연구에서는 구글에서 제공하는 딥러닝 오픈소스 라이브러리인 텐서플로우(TensorFlow)를 활용하여 LSTM모형을 구축하고 금강 상류에 위치한 용담다목적댐의 유입량을 예측하였다. 분석 자료로는 WAMIS에서 제공하는 용담댐의 2006년부터 2018년까지의 시간당 유입량 자료를 사용하였으며, 예측된 유입량과 관측 유입량의 비교를 통하여 평균제곱오차(RMSE), 평균절대오차(MAE), 용적오차(VE)를 계산하고 모형의 학습변수에 따른 정확도를 평가하였다. 분석결과, 모든 모형이 고유량에서의 정확도가 낮은 것으로 나타났으며, 이와 같은 문제를 해결하기 위하여 용담댐 유역의 시간당 강수량 자료를 추가 학습 자료로 활용하여 분석한 결과, 고유량에 대한 예측의 정확도가 높아지는 것을 알 수 있었다.
본 연구에서는 도시지역 관망 내 수위 관측자료를 이용하여 도시지역 유출해석 및 관망해석의 정확도를 높이고자 한다. 이를 위해 도시유출해석의 주요 매개변수별 민감도 분석을 수행하고, 매개변수의 보정을 수행하였다. 매개변수의 민감도는 관의 조도계수, 불투수지역의 조도계수, 유역폭, 투수지역의 조도계수 순으로 나타났다. 민감도가 높은 4개의 매개변수를 이용하여 매개변수 고려 개수와 종류에 따라 6가지 시나리오를 구성하였으며, 자동보정기법인 PEST를 도시유출 모형인 SWMM과 연계 해석하여 분석하였다. 각 조건을 2013년 7월 21일 집중호우로 인하여 침수피해가 발생한 서초3, 4, 5, 역삼, 논현 배수분구에 적용하였다. 민감도 결과를 이용하여 시나리오별 분석을 실시하였을 때 SWMM 모형만을 이용하였을 때 보다 불확실성이 줄어든 결과를 보였다. 모의결과 RMSE는 최대 2.41cm가 감소하였으며, 상대첨두오차는 13.7%가 감소하였다. 민감도가 낮은 투수지역의 지표면 조도계수를 고려한 시나리오의 경우가 고려하지 않은 시나리오의 경우보다 정확도가 소폭 낮아졌으며 계산시간도 많이 소요되었다. 본 연구 결과 대상 유역에 대한 민감도 분석 후 민감도가 높은 매개변수만을 고려하여 시나리오를 구성하였을 때 보다 효율적인 모의가 될 수 있다는 것을 알 수 있었으며 향후 추가적인 강우사상과 침수해석을 연계할 시에는 도시지역의 침수예경보 연구에 기여할 수 있을 것으로 판단된다.
Recently, as the number of smart-phone users has been rapidly increased, enterprise managers have a keen interest in business application of social media. Most previous studies have focused on perspective of the individual unit of analysis instead of enterprise level unit. The study is focused on the relationship between the enterprises' recognition and behavioral intention (and use) about social media application. The purpose of this study is to develop the model of small and medium enterprises' social media application, and to find the factors affecting their behavioral intention or use behavior. The moderating effects of four corporate characteristics on the relationship between the enterprises' recognition and behavioral intention are also examined. We surveyed 900 corporate staffs and received 203 responses. After questionnaires with unreliable responses had been excluded, 182 effective samples were used in the final analysis. The findings suggest that Performance Expectation, Social Influence, Facilitating Conditions significantly affect Behavioral Intention of social medea, and Behavioral Intention affects USE. Furthermore, some corporate characteristics have moderating effect on the relationship between recognition of social media and Behavioral Intention.
During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.343-346
/
2002
Toward more accurate determination of the water cycle in association with climate variability and change as well as baseline data on the impacts of this variability on water resources, the Coordinated Enhanced Observing Period (CEOP) was launched on July 1,2001. The preliminary data period, EOP-1, was implemented from July to September in 2001. The first annual enhanced observing period, EOP-3, is going to start on October 1,2002. CEOP is seeking to achieve a database of common measurements from both in situ and satellite remote sensing, model output, and four-dimensional data analyses (4DDA; including global and regional reanalyses) for a specified period. In this context a number of carefully selected reference stations are linked closely with the existing network of observing sites involved in the GEWEX Continental Scale Experiments, which are distributed across the world. The initial step of CEOP is to develop a pilot global hydro-climatological dataset with global consistency under the climate variability that can be used to help validate satellite hydrology products and evaluate, develop and eventually predict water and energy cycle processes in global and regional models. Based on the dataset, we will address the studies on the inter-comparison and inter-connectivity of the monsoon systems and regional water and energy budget, and a path to down-scaling from the global climate to local water resources, as the second step.
Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.
중소기업의 정보화 영역은 생산정보화, 경영관리자동화, 네트워크화의 3가지 요소로 구분된다. 본 논문은 경영정보시스템을 이용하는 경영관리자동화를 주로 다룬다. 기능적으로 보면 생산, 판매, 인사, 회계 등 4개의 분야로 크게 나누어지나 대부분의 중소기업은 생산과 판매에 더 많은 주안점을 둔다. 따라서 이 두 개의 핵심 기능을 중심으로 객체지향방법론에 기반하여 통합된 정보시스템이 구축된다. 본 논문이 제안하는 단계별모델의 중요한 하나의 단계인 이 통합시스템은 단순화와 집중화의 원리를 수용했을 뿐만 아니라 객체지향패러다임을 이용하여 모듈화 및 친숙화를 구현하였다.
Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.
This research constructs a data set regarding competition policy through a comprehensive review of previous studies, and performs a meta-analysis to quantitatively assess the price effects of deregulation. A structural econometric model is used to eliminate possible biases from heterogeneity of the studies,such as in publication types and measurement methods. Four types of regulations that deter competition are characterized and three groups of industries are made for drawing practical implications. We fnd that deregulation to promote competition reduces prices by 0.23% and that these estimated price effects are more stable when we control for the publication types and measurement ways. Easing regulations that restrict consumers' choice is shown to be most effcient in promoting competition, lowering prices by 0.7%. This is followed by eliminating the limitation in the number of frms in the industry, with 0.2% price reduction. Overall, the network and service industries are shown to be more responsive to deregulation than the R&D industry. These results could shed light on policy implementation when a pro-competition policy is called for due to restrictive regulations in the corresponding industries.
Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
JSTS:Journal of Semiconductor Technology and Science
/
제14권2호
/
pp.252-261
/
2014
A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.