References
- J. B. Barbedo "Digital image processing techniques for detecting, quantifying and classifying plant diseases," SpringerPlus, vol. 2, no. 1, pp. 660, 2013. https://doi.org/10.1186/2193-1801-2-660
- A. Camargo and J. S. Smith, "Image pattern classification for the identification of disease causing agents in plants," Computers and Electronics in Agriculture, vols. 66, no. 2, pp. 121-125, 2009. https://doi.org/10.1016/j.compag.2009.01.003
- D. Casanova, J. J. de Mesquita Sa Junior and O. M. Bruno, "Plant leaf identification using Gabor wavelets". International Journal of Imaging Systems and Technology, vol. 19, no. 3, pp.236-243, 2009. https://doi.org/10.1002/ima.20201
- C. Farabet, C. Couprie, L. Najman and Y. LeCun, "Learning hierarchical features for scene labeling". IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1915-1929, 2013. https://doi.org/10.1109/TPAMI.2012.231
- F. Garcia-Ruiz, S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen and R. Ehsani, "Comparison of two aerial imaging platforms for identification of Huangl ongbing-infected citrus trees," Computers and Electronics in Agriculture, vol. 91, pp. 106-115, 2013. https://doi.org/10.1016/j.compag.2012.12.002
- M. M. Ghazi, B. Yanikoglu and E. Aptoula, "Plant identification using deep neural networks via optimization of transfer learning parameters," Neurocomputing, vol. 235, pp. 228-235, 2017. https://doi.org/10.1016/j.neucom.2017.01.018
- G. E. Hinton, S. Osindero and Y. W. The, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006. https://doi.org/10.1162/neco.2006.18.7.1527
- K. Kavukcuoglu, P. Sermanet, Y. L. Boureau, K. Gregor, M. Mathieu and Y. L. Cun, "Learning convolutional feature hierarchies for visual recognition". In Advances in neural information processing systems, pp. 1090-1098, 2010.
- A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," In Advances in neural information processing systems, pp. 1097-1105, 2012.
- Y. LeCun, Y. Bengio Y and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel, "Back propagation applied to handwritten zip code recognition," Neural computation, vol. 1, no. 4, pp. 541-551, 1989. https://doi.org/10.1162/neco.1989.1.4.541
- S. H. Lee, C. S. Chan, P. Wilkin and P. Remagnino, "Deep-plant: Plant identification with convolutional neural networks," In Image Processing (ICIP), 2015 IEEE International Conference on, pp. 452-456, 2015.
- S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2010. https://doi.org/10.1109/TKDE.2009.191
- A. K. Reyes, J. C. Caicedo and J. E. Camargo, "Fine-tuning Deep Convolutional Networks for Plant Recognition," In CLEF (Working Notes), 2015.
- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein and A. C. Berg, "Imagenet large scale visual recognition challenge," International Journal of Computer Vision, vol. 115, no. 3, pp. 211- 252, 2015. https://doi.org/10.1007/s11263-015-0816-y
- S. Sankaran, A. Mishra, R. Ehsani and C Davis, "A review of advanced techniques for detecting plant diseases," Computers and Electronics in Agriculture, vol. 72, no. 1, pp. 1-3, 2010. https://doi.org/10.1016/j.compag.2010.02.007
- Jr. D. G. Sena, F. A. Pinto, D. M. Queiroz and P. A. Viana, "Fall armyworm damaged maize plant identification using digital images," Biosystems Engineering, vol. 85. No. 4, pp. 449-454, 2003. https://doi.org/10.1016/S1537-5110(03)00098-9
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, "Going deeper with convolutions," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015.
- L. Torrey and J. Shavlik, Transfer learning. Hand book of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI-Global, 2009.
- L. Wang, Y. Xiong, Z. Wang and Y. Qiao, "Towards good practices for very deep two-stream convnets," arXiv preprint arXiv:1507.02159, 2015.
- Y. Wang, G. W. Cottrell, "Bikers are like tobacco shops, formal dressers are like suits: Recognizing urban tribes with caffe," In Applications of Computer Vision (WACV), pp. 876-883, 2015.
- B. Zhou, A. Lapedriza, J. Xiao, A. Torralba and A. Oliva, "Learning deep features for scene recognition using places database," In Advances in neural information processing systems, pp. 487-495, 2014.