This paper aims to describe the theme of English clause in terms of systemic grammar. For this I analyze the three subaereas of subject theme and the four subareas of nonsubject theme in the form of features. Each of the seven feature sets of the seven thematic subareas is described in the systemic model. Finally All of the subsystems are described in the framework of the system network in order to show the potential of options of thematic English clause available in a certain situation.
The aim of this study was to develop a marbling classification and prediction model using small parts of sirloin images based on a deep learning algorithm, namely, a convolutional neural network (CNN). Samples were purchased from a commercial slaughterhouse in Korea, images for each grade were acquired, and the total images (n = 500) were assigned according to their grade number: 1++, 1+, 1, and both 2 & 3. The image acquisition system consists of a DSLR camera with a polarization filter to remove diffusive reflectance and two light sources (55 W). To correct the distorted original images, a radial correction algorithm was implemented. Color images of sirloins of Hanwoo (mixed with feeder cattle, steer, and calf) were divided and sub-images with image sizes of 161 × 161 were made to train the marbling prediction model. In this study, the convolutional neural network (CNN) has four convolution layers and yields prediction results in accordance with marbling grades (1++, 1+, 1, and 2&3). Every single layer uses a rectified linear unit (ReLU) function as an activation function and max-pooling is used for extracting the edge between fat and muscle and reducing the variance of the data. Prediction accuracy was measured using an accuracy and kappa coefficient from a confusion matrix. We summed the prediction of sub-images and determined the total average prediction accuracy. Training accuracy was 100% and the test accuracy was 86%, indicating comparably good performance using the CNN. This study provides classification potential for predicting the marbling grade using color images and a convolutional neural network algorithm.
한국환경과학회 2003년도 International Symposium on Clean Environment
/
pp.73-78
/
2003
In this research, we implement Realtime Air Diffusion Prediction System which is a parallel Fortran model running on distributed-memory parallel computers. The system is designed for air diffusion simulations with four-dimensional data assimilation. For regional air quality forecasting a series of dynamic downscaling technique is adopted using the NCAR/Penn. State MM5 model which is an atmospheric model. The realtime initial data have been provided daily from the KMA (Korean Meteorological Administration) global spectral model output. It takes huge resources of computation to get 24 hour air quality forecast with this four step dynamic downscaling (27km, 9km, 3km, and lkm). Parallel implementation of the realtime system is imperative to achieve increased throughput since the realtime system have to be performed which correct timing behavior and the sequential code requires a large amount of CPU time for typical simulations. The parallel system uses MPI (Message Passing Interface), a standard library to support high-level routines for message passing. We validate the parallel model by comparing it with the sequential model. For realtime running, we implement a cluster computer which is a distributed-memory parallel computer that links high-performance PCs with high-speed interconnection networks. We use 32 2-CPU nodes and a Myrinet network for the cluster. Since cluster computers more cost effective than conventional distributed parallel computers, we can build a dedicated realtime computer. The system also includes web based Gill (Graphic User Interface) for convenient system management and performance monitoring so that end-users can restart the system easily when the system faults. Performance of the parallel model is analyzed by comparing its execution time with the sequential model, and by calculating communication overhead and load imbalance, which are common problems in parallel processing. Performance analysis is carried out on our cluster which has 32 2-CPU nodes.
다양한 내부경계를 포함하는 폐합형 하천수계에 대한 부정류 계산모형을 개발하였다. 계산모형은 폐합형 수계모형으로서, 계산기법으로는 Preissmann의 4점 음해법과 폐합형 double sweep 알고리즘에 근거한 모형을 사용하였다. 또한 댐 및 수중보 등의 수공구조물에서 발생할 수 있는 월류흐름, 오리피스형 흐름 등에 대한 모의가 가능하도록 하고, Auto ROM에 의한 댐에서의 홍수조절 방안을 내부경계 조건으로 포함하여 홍수시 운영조건에 대한 모의가 가능하도록 하였다. 팔당댐 하류부와 충주 조정지댐 하류의 남한강 구간 및 화천댐 하류의 북한강 구간을 포함하도록 한강 수계에 대한 계산모형을 수립하였다. 또한 과거에 발생한 총 11개의 홍수사상을 사용하여 남한강 구간에 대한 조도계수를 추정하였다. 홍수기간 중 목표수위를 유지하도록 하는 팔당댐 및 북한강 수계 댐들의 홍수조절 방안을 설정하고, 수립된 방법을 사용하여 과거에 발생한 홍수사상에 대한 모의계산을 수행한 결과, 설정된 홍수조절 방안이 잘 모의되는 것으로 나타났다.
Opanasyk, Oksana;Popova, Yana;Matiiv, Ihor;Radenko, Yuliia;Mozharovska, Hanna
International Journal of Computer Science & Network Security
/
제22권3호
/
pp.245-251
/
2022
In the context of the pandemic, educational institutions had to ensure an instant transition to remote technological models of communication within the new conditions of the educational environment. The purpose of the academic paper lies in determining the role of the communicative model of educational transformations in the realities of (post) modernity. The research methodology is based on a survey of 120 students from 10 higher educational institutions (HEIs) of Ukraine through an online form regarding the importance of live communication during a pandemic. Results. The communicative model changed significantly during the pandemic - the interaction was mainly due to technologies. The research has identified four communication models of educational transformations under the conditions of the pandemic, depending on learning models. The first traditional model of distance learning involves distance learning; the second model involves contact remote training using remote educational technologies; the third model is blended learning, which combines remote and traditional learning formats, synchronous and asynchronous modes of interaction; the fourth model is traditional contact training. The empirical study of the effectiveness of communication models proves that live communication remains extremely important for learning and understanding of educational materials by students, and technology has provided support for such communication. Along with this, seminars and video lectures with presentations combining live communication and communication technologies are as important as digital learning tools. The most effective teaching method for mastering and memorizing educational material was a live dialogue with a teacher at seminars in ZOOM, followed by individual written assignments on the studied topic.
Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.
Three meteor-statistical forecasting models - the transfer function model, the time-series autoregressive model and the neural networks model - were tested to develop a daily forecasting model for Jejudo, where the need and demand for wind power forecasting has increased. All the meteorological observation sites in Jejudo have been classified into 6 groups using a cluster analysis. Four pairs of observation sites among them, all having strong wind speed correlation within the same meteorological group, were chosen for a model test. In the development of the wind speed forecasting model for Jejudo, it was confirmed that not only the use a wind dataset at the objective site itself, but the introduction of another wind dataset at the nearest site having a strong wind speed correlation within the same group, would enhance the goodness to fit of the forecasting. A transfer function model and a neural network model were also confirmed to offer reliable predictions, with the similar goodness to fit level.
본 논문에서는 워크플로우 협력네트워크 지식의 발견 알고리즘을 제안한다. 즉, 워크플로우 인텔리전스 (또는 비즈니스 프로세스 인텔리전스) 기술은 워크플로우 모델들과 그의 실행이력으로부터 일련의 지식을 발견, 분석, 모니터링 및 제어, 그리고 예측하는 세부기법들로 구성되는데, 본 논문에서는 워크플로우 모델을 구성하는 액티버티들과 그들의 수행자들간의 협력네트워크 지식을 "워크 플로우 협력네크워크 지식"라고 정의하고, 그의 발견기법인 정보제어넷(ICN, information control net)기반 워크플로우 협력네트워크 지식 발견 알고리즘을 제안한다. 특히, 제안한 알고리즘의 적용 사례를 통해 특정 워크플로우 모델로부터 해당 워크플로우 협력네트워크 지식을 성공적으로 생성할 수 있음을 증명함으로써 본 논문에서 제안한 알고리즘의 정확성 및 적합성을 검증한다.
유역순간단위도를 수로기하학적 특성과 사면을 고려하여 유도하였다. 수로기하학적 특성은 Width function으로 정량화되며, 이것은 출구로부터 임의 흐름거리의 유량 분포를 나타낸다. 유역순간단위도의 유도에 사용된 모형은 간단한 확산함수에 의해 수로에 분포된 초기유량을 추적하는 추적요소와 사변에서의 체류시간 밀도함수인 지수분포로 나타내지는 사면요소로 구성하였다. 본 방법의 적용성을 검토하기 위하여 보청천유역, 위천유역에 대해 4개사상의 실측수문량을 이용하여 유역순간단위유량도를 산정하였으며, 산정 결과, 본 연구에서 제안한 방법 을 이용해 유역순간단위유량도를 유도할 수 있음을 확인하였다.
The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for slab bridge decks were analysed. Artificial neural networks are efficient computing techniqures that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing slab bridge decks from damage cause, damage type, and integrity assessment at the initial stsge is need. The training and testing of the network were based on a database of 36. Four different network models werw used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterms were minimized. This generally occurred after about 5,000 cycles of training.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.