• Title/Summary/Keyword: Foundations

Search Result 1,505, Processing Time 0.028 seconds

Experimental Evaluation of the Moment Capacity of a Railway Electric Pole Foundation Adjacent to a Fill Slope (실물 재하시험을 통한 성토사면에 근접한 철도 전철주기초의 저항모멘트 평가)

  • Lee, Su-Hyung;Lee, Sung-Jin;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The moment responses of electric pole foundations for a railway were investigated using real-scale load tests. Large overturning moments were applied to two circular rigid piles with a 0.75 m diameter and a 2.5 m embedded depth; the circular rigid piles were installed in an actual railway embankment fill. Two different loading directions-toward the fill slope and toward the track -were applied to evaluate the influence of the fill slope on the moment capacities of the foundations. It was found that the failure of the foundations that were constructed according to Korean railway practices exhibited a sudden overturning pattern without any significant pre-failure displacement. The moment capacity toward the fill slope was less than the moment capacity toward the track by 30%. From the test results, the geometry factor (K), which accounted for the reduction of the moment capacity, due to the fill slope, was 0.7. Moment capacities determined from the load tests were compared with those predicted from three existing design methods, and their applicability was discussed.

Numerical Analyses on Moment Resisting Behaviors of Electric Pole Foundations According to Their Shapes (기초형상에 따른 전철주기초 모멘트 저항거동에 관한 수치해석 연구)

  • Lee, Su-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.85-97
    • /
    • 2013
  • Electric pole foundations for overhead catenary system of railroad should be designed so that they may resist significant overturning moment but relatively small vertical forces. Also they should have proper shapes to be installed at restricted narrow areas adjacent to railroad track. In this paper the moment responses of rectangular pole foundations according to their shapes were investigated numerically. A three-dimensional finite element method was developed and verified so that the numerical behaviors of the foundation resisting the overturning moments were compared reasonably well with those from an existing real-scale load test. The influences of aspect ratio, varying section with depth and loading directions for rectangular section were investigated using the developed numerical method. From the numerical results, the optimized shapes of pole foundation for more effective and economic installation adjacent to railroad track are proposed.

A Study on the Stability of Subsidence for the Foundation of Rectangular Pyramid (사각 피라미드 기초의 침하 안정성에 관한 연구)

  • Kim, Seong-Pil;Kim, Doo-Hwan;Song, Kwan-Kwon;Lee, Ki-Sun;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • In this study, the settlement of concrete rectangular pyramid foundation on soft ground is investigated based on a finite element analysis. considering the grounding load and the grounding area of square pyramid foundation, we compensate the insufficient design bearing capacity and investigated the effect of settlement by load. Based on this study, it is found that the rectangular pyramid foundation shows the smallest settlement of three different type of foundations. As a result of this study, it was resulted that the square pyramid foundations were more effective than the crushed stone foundations by 18%. These results show that the ground pressures of the square pyramid bases are divided into horizontal and vertical stresses, so it is analyzed that the horizontal stress builds up the rigid ground on the foundation of the structure and distributes the load widely to increase the resistance to the overhead load.

3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions

  • Amornfa, Kamol;Quang, Ha T.;Tuan, Tran V.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2022
  • Piled raft foundations are widely used and effective in supporting high-rise buildings around the world. In this study, a piled raft system was numerically simulated using PLAXIS 3D. The settlement comparison results between the actual building measurements and the three-dimensional (3D) numerical analysis, were in good agreement, indicating the usefulness of this approach for the evaluation of the feasibility of using a piled raft foundation in Ho Chi Minh City subsoil. The effects were investigated of the number of piles based on pile spacing, pile length, raft embedment on the settlement, load sharing, bending moments, and the shear force of the piled raft foundation in Ho Chi Minh City subsoil. The results indicated that with an increased number of piles, increased pile length, and embedding raft depth, the total and differential settlement decreased. The optimal design consisted of pile numbers of 60-70, corresponding to pile spacings is 5.5-6 times the pile diameter (Dp), in conjunction with a pile length-to-pile diameter ratio of 30. Furthermore, load sharing by the raft, by locating it in the second layer of stiff clay, could achieve 66% of the building load. The proposed model of piled raft foundations could reduce the total foundation cost by 49.61% compared to the conventional design. This research can assist practicing engineers in selecting pile and raft parameters in the design of piled raft foundations to produce an economical design for high-rise buildings in Ho Chi Minh City, Viet Nam, and around the world.

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

The relationships between autistic trait and socio-moral judgments (자폐 기질과 사회도덕적 판단과의 관계)

  • Kyong-sun Jin;Minjung Cha;Hyun-joo Song
    • Korean Journal of Culture and Social Issue
    • /
    • v.25 no.2
    • /
    • pp.137-155
    • /
    • 2019
  • The present study investigated the relationships between autistic trait and socio-moral judgments. We used Autism Spectrum Quotient, a moral judgment task in which participants needed to consider both the intention and outcomes of a person's actions, a moral judgment task in which participants were asked to evaluate a person's utilitarian choices in moral dilemmas, and Moral Foundations Questionnaire. Autistic traits were negatively correlated with blame for failed attempts to harm others, suggesting that higher autistic traits were associated with difficulty in considering intentions in moral judgments. Also, higher autistic traits were associated with higher endorsement of utilitarian option on personal moral dilemmas, and lower endorsement for no-harm principle of moral foundations. These correlations were confirmed as group differences between high autistic-trait group (AQ >= 26) and a low autistic-trait group (AQ < 26). Our findings suggest that individuals with high autistic trait may have difficulty in considering others' intentions and show lower sensitivity to no-harm principle in moral judgment tasks.

Undrained and Drained Behaviors of Laterally-loaded Offshore Piles (배수조건에 따른 측방유동 해상말뚝의 거동특성)

  • Seo, Dong-Hee;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.149-160
    • /
    • 2008
  • Offshore pile foundations are prone to lateral soil pressures resulting from embankment construction for the reclamation on deepwater soft clay. Since the 1990s, offshore reclamation has actively progressed in Korea, connecting with the development of Songdo newtown, Incheon newport, and Busan newport representatively. Special attention has been given to lateral soil-structure interaction problems related to passively-loaded offshore pile foundations. Based on a plane strain large deformation finite element (LDFE) approach, this paper presents the results of investigation into undrained (short-term) and drained (long-term) behavior of passively-loaded offshore pile foundations. This study examines the effects of major factors, such as soil profile, pile head boundary condition, magnitude of embankment load, and average degree of consolidation. The results allowed quantification of differences in the magnitude of lateral soil pressure acting on the piles between undrained and drained phases.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.